com.facebook.presto.jdbc.internal.okhttp3.Dispatcher Maven / Gradle / Ivy
/*
* Copyright (C) 2013 Square, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.facebook.presto.jdbc.internal.okhttp3;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Deque;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.SynchronousQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import com.facebook.presto.jdbc.internal.javax.annotation.Nullable;
import com.facebook.presto.jdbc.internal.okhttp3.RealCall.AsyncCall;
import com.facebook.presto.jdbc.internal.okhttp3.internal.Util;
/**
* Policy on when async requests are executed.
*
* Each dispatcher uses an {@link ExecutorService} to run calls internally. If you supply your
* own executor, it should be able to run {@linkplain #getMaxRequests the configured maximum} number
* of calls concurrently.
*/
public final class Dispatcher {
private int maxRequests = 64;
private int maxRequestsPerHost = 5;
private @Nullable Runnable idleCallback;
/** Executes calls. Created lazily. */
private @Nullable ExecutorService executorService;
/** Ready async calls in the order they'll be run. */
private final Deque readyAsyncCalls = new ArrayDeque<>();
/** Running asynchronous calls. Includes canceled calls that haven't finished yet. */
private final Deque runningAsyncCalls = new ArrayDeque<>();
/** Running synchronous calls. Includes canceled calls that haven't finished yet. */
private final Deque runningSyncCalls = new ArrayDeque<>();
public Dispatcher(ExecutorService executorService) {
this.executorService = executorService;
}
public Dispatcher() {
}
public synchronized ExecutorService executorService() {
if (executorService == null) {
executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
new SynchronousQueue(), Util.threadFactory("OkHttp Dispatcher", false));
}
return executorService;
}
/**
* Set the maximum number of requests to execute concurrently. Above this requests queue in
* memory, waiting for the running calls to complete.
*
* If more than {@code maxRequests} requests are in flight when this is invoked, those requests
* will remain in flight.
*/
public synchronized void setMaxRequests(int maxRequests) {
if (maxRequests < 1) {
throw new IllegalArgumentException("max < 1: " + maxRequests);
}
this.maxRequests = maxRequests;
promoteCalls();
}
public synchronized int getMaxRequests() {
return maxRequests;
}
/**
* Set the maximum number of requests for each host to execute concurrently. This limits requests
* by the URL's host name. Note that concurrent requests to a single IP address may still exceed
* this limit: multiple hostnames may share an IP address or be routed through the same HTTP
* proxy.
*
*
If more than {@code maxRequestsPerHost} requests are in flight when this is invoked, those
* requests will remain in flight.
*/
public synchronized void setMaxRequestsPerHost(int maxRequestsPerHost) {
if (maxRequestsPerHost < 1) {
throw new IllegalArgumentException("max < 1: " + maxRequestsPerHost);
}
this.maxRequestsPerHost = maxRequestsPerHost;
promoteCalls();
}
public synchronized int getMaxRequestsPerHost() {
return maxRequestsPerHost;
}
/**
* Set a callback to be invoked each time the dispatcher becomes idle (when the number of running
* calls returns to zero).
*
*
Note: The time at which a {@linkplain Call call} is considered idle is different depending
* on whether it was run {@linkplain Call#enqueue(Callback) asynchronously} or
* {@linkplain Call#execute() synchronously}. Asynchronous calls become idle after the
* {@link Callback#onResponse onResponse} or {@link Callback#onFailure onFailure} callback has
* returned. Synchronous calls become idle once {@link Call#execute() execute()} returns. This
* means that if you are doing synchronous calls the network layer will not truly be idle until
* every returned {@link Response} has been closed.
*/
public synchronized void setIdleCallback(@Nullable Runnable idleCallback) {
this.idleCallback = idleCallback;
}
synchronized void enqueue(AsyncCall call) {
if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
runningAsyncCalls.add(call);
executorService().execute(call);
} else {
readyAsyncCalls.add(call);
}
}
/**
* Cancel all calls currently enqueued or executing. Includes calls executed both {@linkplain
* Call#execute() synchronously} and {@linkplain Call#enqueue asynchronously}.
*/
public synchronized void cancelAll() {
for (AsyncCall call : readyAsyncCalls) {
call.get().cancel();
}
for (AsyncCall call : runningAsyncCalls) {
call.get().cancel();
}
for (RealCall call : runningSyncCalls) {
call.cancel();
}
}
private void promoteCalls() {
if (runningAsyncCalls.size() >= maxRequests) return; // Already running max capacity.
if (readyAsyncCalls.isEmpty()) return; // No ready calls to promote.
for (Iterator i = readyAsyncCalls.iterator(); i.hasNext(); ) {
AsyncCall call = i.next();
if (runningCallsForHost(call) < maxRequestsPerHost) {
i.remove();
runningAsyncCalls.add(call);
executorService().execute(call);
}
if (runningAsyncCalls.size() >= maxRequests) return; // Reached max capacity.
}
}
/** Returns the number of running calls that share a host with {@code call}. */
private int runningCallsForHost(AsyncCall call) {
int result = 0;
for (AsyncCall c : runningAsyncCalls) {
if (c.host().equals(call.host())) result++;
}
return result;
}
/** Used by {@code Call#execute} to signal it is in-flight. */
synchronized void executed(RealCall call) {
runningSyncCalls.add(call);
}
/** Used by {@code AsyncCall#run} to signal completion. */
void finished(AsyncCall call) {
finished(runningAsyncCalls, call, true);
}
/** Used by {@code Call#execute} to signal completion. */
void finished(RealCall call) {
finished(runningSyncCalls, call, false);
}
private void finished(Deque calls, T call, boolean promoteCalls) {
int runningCallsCount;
Runnable idleCallback;
synchronized (this) {
if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
if (promoteCalls) promoteCalls();
runningCallsCount = runningCallsCount();
idleCallback = this.idleCallback;
}
if (runningCallsCount == 0 && idleCallback != null) {
idleCallback.run();
}
}
/** Returns a snapshot of the calls currently awaiting execution. */
public synchronized List queuedCalls() {
List result = new ArrayList<>();
for (AsyncCall asyncCall : readyAsyncCalls) {
result.add(asyncCall.get());
}
return Collections.unmodifiableList(result);
}
/** Returns a snapshot of the calls currently being executed. */
public synchronized List runningCalls() {
List result = new ArrayList<>();
result.addAll(runningSyncCalls);
for (AsyncCall asyncCall : runningAsyncCalls) {
result.add(asyncCall.get());
}
return Collections.unmodifiableList(result);
}
public synchronized int queuedCallsCount() {
return readyAsyncCalls.size();
}
public synchronized int runningCallsCount() {
return runningAsyncCalls.size() + runningSyncCalls.size();
}
}