com.facebook.presto.ml.LearnLibSvmVarcharClassifierAggregation Maven / Gradle / Ivy
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.facebook.presto.ml;
import com.facebook.presto.common.block.Block;
import com.facebook.presto.common.block.BlockBuilder;
import com.facebook.presto.spi.function.AggregationFunction;
import com.facebook.presto.spi.function.AggregationState;
import com.facebook.presto.spi.function.CombineFunction;
import com.facebook.presto.spi.function.InputFunction;
import com.facebook.presto.spi.function.OutputFunction;
import com.facebook.presto.spi.function.SqlType;
import io.airlift.slice.Slice;
import static com.facebook.presto.common.type.StandardTypes.VARCHAR;
import static com.facebook.presto.ml.type.ClassifierType.VARCHAR_CLASSIFIER;
@AggregationFunction(value = "learn_libsvm_classifier", decomposable = false)
public final class LearnLibSvmVarcharClassifierAggregation
{
private LearnLibSvmVarcharClassifierAggregation() {}
@InputFunction
public static void input(
@AggregationState LearnState state,
@SqlType(VARCHAR) Slice label,
@SqlType("map(bigint,double)") Block features,
@SqlType(VARCHAR) Slice parameters)
{
state.getLabels().add((double) state.enumerateLabel(label.toStringUtf8()));
FeatureVector featureVector = ModelUtils.toFeatures(features);
state.addMemoryUsage(featureVector.getEstimatedSize());
state.getFeatureVectors().add(featureVector);
state.setParameters(parameters);
}
@CombineFunction
public static void combine(@AggregationState LearnState state, @AggregationState LearnState otherState)
{
throw new UnsupportedOperationException("LEARN must run on a single machine");
}
@OutputFunction("Classifier")
public static void output(@AggregationState LearnState state, BlockBuilder out)
{
Dataset dataset = new Dataset(state.getLabels(), state.getFeatureVectors(), state.getLabelEnumeration().inverse());
Model model = new StringClassifierAdapter(new ClassifierFeatureTransformer(new SvmClassifier(LibSvmUtils.parseParameters(state.getParameters().toStringUtf8())), new FeatureUnitNormalizer()));
model.train(dataset);
VARCHAR_CLASSIFIER.writeSlice(out, ModelUtils.serialize(model));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy