com.facebook.presto.ml.FeatureVectorUnitNormalizer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of presto-ml Show documentation
Show all versions of presto-ml Show documentation
Presto - Machine Learning Plugin
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.facebook.presto.ml;
import com.facebook.presto.ml.type.ModelType;
import java.util.HashMap;
import java.util.Map;
import static com.google.common.base.Preconditions.checkArgument;
/**
* Normalizes features by making every feature vector unit length.
*
* NOTE: This is generally not a good way to normalize features, and is mainly provided as an example.
*/
public class FeatureVectorUnitNormalizer
extends AbstractFeatureTransformation
{
@Override
public ModelType getType()
{
return ModelType.MODEL;
}
@Override
public byte[] getSerializedData()
{
// This transformation has no state
return new byte[0];
}
public static FeatureVectorUnitNormalizer deserialize(byte[] modelData)
{
checkArgument(modelData.length == 0, "modelData should be empty");
return new FeatureVectorUnitNormalizer();
}
@Override
public void train(Dataset dataset)
{
// Do nothing, since this transformation is stateless
}
@Override
public FeatureVector transform(FeatureVector features)
{
double sumSquares = 0;
for (Double value : features.getFeatures().values()) {
sumSquares += value * value;
}
double magnitude = Math.sqrt(sumSquares);
Map transformed = new HashMap<>();
for (Map.Entry entry : features.getFeatures().entrySet()) {
transformed.put(entry.getKey(), entry.getValue() / magnitude);
}
return new FeatureVector(transformed);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy