All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.fasterxml.jackson.core.io.NumberInput Maven / Gradle / Ivy

package com.fasterxml.jackson.core.io;

import java.math.BigDecimal;

public final class NumberInput
{
    /**
     * Textual representation of a double constant that can cause nasty problems
     * with JDK (see http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308).
     */
    public final static String NASTY_SMALL_DOUBLE = "2.2250738585072012e-308";

    /**
     * Constants needed for parsing longs from basic int parsing methods
     */
    final static long L_BILLION = 1000000000;

    final static String MIN_LONG_STR_NO_SIGN = String.valueOf(Long.MIN_VALUE).substring(1);
    final static String MAX_LONG_STR = String.valueOf(Long.MAX_VALUE);

    /**
     * Fast method for parsing unsigned integers that are known to fit into
     * regular 32-bit signed int type. This means that length is
     * between 1 and 9 digits (inclusive) and there is no sign character.
     *

* Note: public to let unit tests call it; not meant to be used by any * code outside this package. * * @param ch Buffer that contains integer value to decode * @param off Offset of the first digit character in buffer * @param len Length of the number to decode (in characters) * * @return Decoded {@code int} value */ public static int parseInt(char[] ch, int off, int len) { int num = ch[off + len - 1] - '0'; switch(len) { case 9: num += (ch[off++] - '0') * 100000000; case 8: num += (ch[off++] - '0') * 10000000; case 7: num += (ch[off++] - '0') * 1000000; case 6: num += (ch[off++] - '0') * 100000; case 5: num += (ch[off++] - '0') * 10000; case 4: num += (ch[off++] - '0') * 1000; case 3: num += (ch[off++] - '0') * 100; case 2: num += (ch[off] - '0') * 10; } return num; } /** * Helper method to (more) efficiently parse integer numbers from * String values. Input String must be simple Java integer value. * No range checks are made to verify that the value fits in 32-bit Java {@code int}: * caller is expected to only calls this in cases where this can be guaranteed * (basically: number of digits does not exceed 9) *

* NOTE: semantics differ significantly from {@link #parseInt(char[], int, int)}. * * @param s String that contains integer value to decode * * @return Decoded {@code int} value */ public static int parseInt(String s) { /* Ok: let's keep strategy simple: ignoring optional minus sign, * we'll accept 1 - 9 digits and parse things efficiently; * otherwise just defer to JDK parse functionality. */ char c = s.charAt(0); int len = s.length(); boolean neg = (c == '-'); int offset = 1; // must have 1 - 9 digits after optional sign: // negative? if (neg) { if (len == 1 || len > 10) { return Integer.parseInt(s); } c = s.charAt(offset++); } else { if (len > 9) { return Integer.parseInt(s); } } if (c > '9' || c < '0') { return Integer.parseInt(s); } int num = c - '0'; if (offset < len) { c = s.charAt(offset++); if (c > '9' || c < '0') { return Integer.parseInt(s); } num = (num * 10) + (c - '0'); if (offset < len) { c = s.charAt(offset++); if (c > '9' || c < '0') { return Integer.parseInt(s); } num = (num * 10) + (c - '0'); // Let's just loop if we have more than 3 digits: if (offset < len) { do { c = s.charAt(offset++); if (c > '9' || c < '0') { return Integer.parseInt(s); } num = (num * 10) + (c - '0'); } while (offset < len); } } } return neg ? -num : num; } public static long parseLong(char[] ch, int off, int len) { // Note: caller must ensure length is [10, 18] int len1 = len-9; long val = parseInt(ch, off, len1) * L_BILLION; return val + (long) parseInt(ch, off+len1, 9); } /** * Similar to {@link #parseInt(String)} but for {@code long} values. * * @param s String that contains {@code long} value to decode * * @return Decoded {@code long} value */ public static long parseLong(String s) { // Ok, now; as the very first thing, let's just optimize case of "fake longs"; // that is, if we know they must be ints, call int parsing int length = s.length(); if (length <= 9) { return (long) parseInt(s); } // !!! TODO: implement efficient 2-int parsing... return Long.parseLong(s); } /** * Helper method for determining if given String representation of * an integral number would fit in 64-bit Java long or not. * Note that input String must NOT contain leading minus sign (even * if 'negative' is set to true). * * @param ch Buffer that contains long value to check * @param off Offset of the first digit character in buffer * @param len Length of the number to decode (in characters) * @param negative Whether original number had a minus sign (which is * NOT passed to this method) or not * * @return {@code True} if specified String representation is within Java * {@code long} range; {@code false} if not. */ public static boolean inLongRange(char[] ch, int off, int len, boolean negative) { String cmpStr = negative ? MIN_LONG_STR_NO_SIGN : MAX_LONG_STR; int cmpLen = cmpStr.length(); if (len < cmpLen) return true; if (len > cmpLen) return false; for (int i = 0; i < cmpLen; ++i) { int diff = ch[off+i] - cmpStr.charAt(i); if (diff != 0) { return (diff < 0); } } return true; } /** * Similar to {@link #inLongRange(char[],int,int,boolean)}, but * with String argument * * @param s String that contains {@code long} value to check * @param negative Whether original number had a minus sign (which is * NOT passed to this method) or not * * @return {@code True} if specified String representation is within Java * {@code long} range; {@code false} if not. */ public static boolean inLongRange(String s, boolean negative) { String cmp = negative ? MIN_LONG_STR_NO_SIGN : MAX_LONG_STR; int cmpLen = cmp.length(); int alen = s.length(); if (alen < cmpLen) return true; if (alen > cmpLen) return false; // could perhaps just use String.compareTo()? for (int i = 0; i < cmpLen; ++i) { int diff = s.charAt(i) - cmp.charAt(i); if (diff != 0) { return (diff < 0); } } return true; } public static int parseAsInt(String s, int def) { if (s == null) { return def; } s = s.trim(); int len = s.length(); if (len == 0) { return def; } // One more thing: use integer parsing for 'simple' int i = 0; // skip leading sign, if any final char sign = s.charAt(0); if (sign == '+') { // for plus, actually physically remove s = s.substring(1); len = s.length(); } else if (sign == '-') { // minus, just skip for checks, must retain i = 1; } for (; i < len; ++i) { char c = s.charAt(i); // if other symbols, parse as Double, coerce if (c > '9' || c < '0') { try { return (int) parseDouble(s); } catch (NumberFormatException e) { return def; } } } try { return Integer.parseInt(s); } catch (NumberFormatException e) { } return def; } public static long parseAsLong(String s, long def) { if (s == null) { return def; } s = s.trim(); int len = s.length(); if (len == 0) { return def; } // One more thing: use long parsing for 'simple' int i = 0; // skip leading sign, if any final char sign = s.charAt(0); if (sign == '+') { // for plus, actually physically remove s = s.substring(1); len = s.length(); } else if (sign == '-') { // minus, just skip for checks, must retain i = 1; } for (; i < len; ++i) { char c = s.charAt(i); // if other symbols, parse as Double, coerce if (c > '9' || c < '0') { try { return (long) parseDouble(s); } catch (NumberFormatException e) { return def; } } } try { return Long.parseLong(s); } catch (NumberFormatException e) { } return def; } public static double parseAsDouble(String s, double def) { if (s == null) { return def; } s = s.trim(); int len = s.length(); if (len == 0) { return def; } try { return parseDouble(s); } catch (NumberFormatException e) { } return def; } public static double parseDouble(String s) throws NumberFormatException { // [JACKSON-486]: avoid some nasty float representations... but should it be MIN_NORMAL or MIN_VALUE? /* as per [JACKSON-827], let's use MIN_VALUE as it is available on all JDKs; normalized * only in JDK 1.6. In practice, should not really matter. */ if (NASTY_SMALL_DOUBLE.equals(s)) { return Double.MIN_VALUE; } return Double.parseDouble(s); } public static BigDecimal parseBigDecimal(String s) throws NumberFormatException { return BigDecimalParser.parse(s); } public static BigDecimal parseBigDecimal(char[] ch, int off, int len) throws NumberFormatException { return BigDecimalParser.parse(ch, off, len); } public static BigDecimal parseBigDecimal(char[] ch) throws NumberFormatException { return BigDecimalParser.parse(ch); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy