Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
package com.fasterxml.jackson.databind;
import com.fasterxml.jackson.databind.cfg.ConfigFeature;
/**
* Enumeration that defines simple on/off features that affect
* the way Java objects are deserialized from JSON
*
* Note that features can be set both through
* {@link ObjectMapper} (as sort of defaults) and through
* {@link ObjectReader}.
* In first case these defaults must follow "config-then-use" patterns
* (i.e. defined once, not changed afterwards); all per-call
* changes must be done using {@link ObjectReader}.
*
* Note that features that do not indicate version of inclusion
* were available in Jackson 2.0 (or earlier); only later additions
* indicate version of inclusion.
*/
public enum DeserializationFeature implements ConfigFeature
{
/*
/******************************************************
/* Value (mostly scalar) conversion features
/******************************************************
*/
/**
* Feature that determines whether JSON floating point numbers
* are to be deserialized into {@link java.math.BigDecimal}s
* if only generic type description (either {@link Object} or
* {@link Number}, or within untyped {@link java.util.Map}
* or {@link java.util.Collection} context) is available.
* If enabled such values will be deserialized as {@link java.math.BigDecimal}s;
* if disabled, will be deserialized as {@link Double}s.
*
* NOTE: one aspect of {@link java.math.BigDecimal} handling that may need
* configuring is whether trailing zeroes are trimmed:
* {@link com.fasterxml.jackson.databind.node.JsonNodeFactory} has
* {@link com.fasterxml.jackson.databind.node.JsonNodeFactory#withExactBigDecimals} for
* changing default behavior (default is for trailing zeroes to be trimmed).
*
* Feature is disabled by default, meaning that "untyped" floating
* point numbers will by default be deserialized as {@link Double}s
* (choice is for performance reason -- BigDecimals are slower than
* Doubles).
*/
USE_BIG_DECIMAL_FOR_FLOATS(false),
/**
* Feature that determines whether JSON integral (non-floating-point)
* numbers are to be deserialized into {@link java.math.BigInteger}s
* if only generic type description (either {@link Object} or
* {@link Number}, or within untyped {@link java.util.Map}
* or {@link java.util.Collection} context) is available.
* If enabled such values will be deserialized as
* {@link java.math.BigInteger}s;
* if disabled, will be deserialized as "smallest" available type,
* which is either {@link Integer}, {@link Long} or
* {@link java.math.BigInteger}, depending on number of digits.
*
* Feature is disabled by default, meaning that "untyped" integral
* numbers will by default be deserialized using whatever
* is the most compact integral type, to optimize efficiency.
*/
USE_BIG_INTEGER_FOR_INTS(false),
/**
* Feature that determines how "small" JSON integral (non-floating-point)
* numbers -- ones that fit in 32-bit signed integer (`int`) -- are bound
* when target type is loosely typed as {@link Object} or {@link Number}
* (or within untyped {@link java.util.Map} or {@link java.util.Collection} context).
* If enabled, such values will be deserialized as {@link java.lang.Long};
* if disabled, they will be deserialized as "smallest" available type,
* {@link Integer}.
* In addition, if enabled, trying to bind values that do not fit in {@link java.lang.Long}
* will throw a {@link com.fasterxml.jackson.core.JsonProcessingException}.
*
* Note: if {@link #USE_BIG_INTEGER_FOR_INTS} is enabled, it has precedence
* over this setting, forcing use of {@link java.math.BigInteger} for all
* integral values.
*
* Feature is disabled by default, meaning that "untyped" integral
* numbers will by default be deserialized using {@link java.lang.Integer}
* if value fits.
*
* @since 2.6
*/
USE_LONG_FOR_INTS(false),
/**
* Feature that determines whether JSON Array is mapped to
* Object[] or {@code List