All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.fasterxml.jackson.jr.private_.io.doubleparser.FastFloatMath Maven / Gradle / Ivy

Go to download

"Uber" jar that contains all Jackson jr components as well as underlying Jackson core Streaming, in a single jar.

There is a newer version: 2.18.2
Show newest version
/**
 * References:
 * 
*
This class has been derived from "FastDoubleParser".
*
Copyright (c) Werner Randelshofer. Apache 2.0 License. * github.com.
*
*/ package com.fasterxml.jackson.core.io.doubleparser; import static com.fasterxml.jackson.core.io.doubleparser.FastDoubleMath.DOUBLE_MIN_EXPONENT_POWER_OF_TEN; import static com.fasterxml.jackson.core.io.doubleparser.FastDoubleMath.MANTISSA_128; import static com.fasterxml.jackson.core.io.doubleparser.FastDoubleMath.MANTISSA_64; import static com.fasterxml.jackson.core.io.doubleparser.FastDoubleMath.fullMultiplication; /** * This class complements {@link FastDoubleMath} with methods for * converting {@code FloatingPointLiteral} productions to floats. *

* See {@link com.fasterxml.jackson.core.io.doubleparser} for a description of * {@code FloatingPointLiteral}. */ class FastFloatMath { /** * Bias used in the exponent of a float. */ private static final int FLOAT_EXPONENT_BIAS = 127; /** * The number of bits in the significand, including the implicit bit. */ private static final int FLOAT_SIGNIFICAND_WIDTH = 24; private final static int FLOAT_MIN_EXPONENT_POWER_OF_TEN = -45; private final static int FLOAT_MAX_EXPONENT_POWER_OF_TEN = 38; private final static int FLOAT_MIN_EXPONENT_POWER_OF_TWO = Float.MIN_EXPONENT; private final static int FLOAT_MAX_EXPONENT_POWER_OF_TWO = Float.MAX_EXPONENT; /** * Precomputed powers of ten from 10^0 to 10^10. These * can be represented exactly using the float type. */ private static final float[] FLOAT_POWER_OF_TEN = { 1e0f, 1e1f, 1e2f, 1e3f, 1e4f, 1e5f, 1e6f, 1e7f, 1e8f, 1e9f, 1e10f}; /** * Don't let anyone instantiate this class. */ private FastFloatMath() { } static float decFloatLiteralToFloat(boolean isNegative, long significand, int exponent, boolean isSignificandTruncated, int exponentOfTruncatedSignificand) { if (significand == 0) { return isNegative ? -0.0f : 0.0f; } final float result; if (isSignificandTruncated) { // We have too many digits. We may have to round up. // To know whether rounding up is needed, we may have to examine up to 768 digits. // There are cases, in which rounding has no effect. if (FLOAT_MIN_EXPONENT_POWER_OF_TEN <= exponentOfTruncatedSignificand && exponentOfTruncatedSignificand <= FLOAT_MAX_EXPONENT_POWER_OF_TEN) { float withoutRounding = tryDecToFloatWithFastAlgorithm(isNegative, significand, exponentOfTruncatedSignificand); float roundedUp = tryDecToFloatWithFastAlgorithm(isNegative, significand + 1, exponentOfTruncatedSignificand); if (!Float.isNaN(withoutRounding) && roundedUp == withoutRounding) { return withoutRounding; } } // We have to take a slow path. //return Double.parseDouble(str.toString()); result = Float.NaN; } else if (FLOAT_MIN_EXPONENT_POWER_OF_TEN <= exponent && exponent <= FLOAT_MAX_EXPONENT_POWER_OF_TEN) { result = tryDecToFloatWithFastAlgorithm(isNegative, significand, exponent); } else { result = Float.NaN; } return result; } static float hexFloatLiteralToFloat(boolean isNegative, long significand, int exponent, boolean isSignificandTruncated, int exponentOfTruncatedSignificand) { if (significand == 0) { return isNegative ? -0.0f : 0.0f; } final float result; if (isSignificandTruncated) { // We have too many digits. We may have to round up. // To know whether rounding up is needed, we may have to examine up to 768 digits. // There are cases, in which rounding has no effect. if (FLOAT_MIN_EXPONENT_POWER_OF_TWO <= exponentOfTruncatedSignificand && exponentOfTruncatedSignificand <= FLOAT_MAX_EXPONENT_POWER_OF_TWO) { float withoutRounding = tryHexToFloatWithFastAlgorithm(isNegative, significand, exponentOfTruncatedSignificand); float roundedUp = tryHexToFloatWithFastAlgorithm(isNegative, significand + 1, exponentOfTruncatedSignificand); if (!Double.isNaN(withoutRounding) && roundedUp == withoutRounding) { return withoutRounding; } } // We have to take a slow path. result = Float.NaN; } else if (FLOAT_MIN_EXPONENT_POWER_OF_TWO <= exponent && exponent <= FLOAT_MAX_EXPONENT_POWER_OF_TWO) { result = tryHexToFloatWithFastAlgorithm(isNegative, significand, exponent); } else { result = Float.NaN; } return result; } /** * Attempts to compute {@literal digits * 10^(power)} exactly; * and if "negative" is true, negate the result. *

* This function will only work in some cases, when it does not work it * returns null. This should work *most of the time* (like 99% of the time). * We assume that power is in the * [{@value FastDoubleMath#DOUBLE_MIN_EXPONENT_POWER_OF_TEN}, * {@value FastDoubleMath#DOUBLE_MAX_EXPONENT_POWER_OF_TEN}] * interval: the caller is responsible for this check. * * @param isNegative whether the number is negative * @param digits uint64 the digits of the number * @param power int32 the exponent of the number * @return the computed double on success, {@link Double#NaN} on failure */ static float tryDecToFloatWithFastAlgorithm(boolean isNegative, long digits, int power) { // we start with a fast path if (-10 <= power && power <= 10 && Long.compareUnsigned(digits, (1L << FLOAT_SIGNIFICAND_WIDTH) - 1L) <= 0) { // convert the integer into a float. This is lossless since // 0 <= i <= 2^24 - 1. float d = (float) digits; // // The general idea is as follows. // If 0 <= s < 2^24 and if 10^0 <= p <= 10^10 then // 1) Both s and p can be represented exactly as 32-bit floating-point values // 2) Because s and p can be represented exactly as floating-point values, // then s * p and s / p will produce correctly rounded values. // if (power < 0) { d = d / FLOAT_POWER_OF_TEN[-power]; } else { d = d * FLOAT_POWER_OF_TEN[power]; } return (isNegative) ? -d : d; } // The fast path has now failed, so we are falling back on the slower path. // We are going to need to do some 64-bit arithmetic to get a more precise product. // We use a table lookup approach. // It is safe because // power >= DOUBLE_MIN_EXPONENT_POWER_OF_TEN // and power <= DOUBLE_MAX_EXPONENT_POWER_OF_TEN // We recover the mantissa of the power, it has a leading 1. It is always // rounded down. long factorMantissa = MANTISSA_64[power - DOUBLE_MIN_EXPONENT_POWER_OF_TEN]; // The exponent is 127 + 64 + power // + floor(log(5**power)/log(2)). // The 127 is the exponent bias. // The 64 comes from the fact that we use a 64-bit word. // // Computing floor(log(5**power)/log(2)) could be // slow. Instead ,we use a fast function. // // For power in (-400,350), we have that // (((152170 + 65536) * power ) >> 16); // is equal to // floor(log(5**power)/log(2)) + power when power >= 0 // and it is equal to // ceil(log(5**-power)/log(2)) + power when power < 0 // // // The 65536 is (1<<16) and corresponds to // (65536 * power) >> 16 ---> power // // ((152170 * power ) >> 16) is equal to // floor(log(5**power)/log(2)) // // Note that this is not magic: 152170/(1<<16) is // approximately equal to log(5)/log(2). // The 1<<16 value is a power of two; we could use a // larger power of 2 if we wanted to. // long exponent = (((152170L + 65536L) * power) >> 16) + FLOAT_EXPONENT_BIAS + 64; // We want the most significant bit of digits to be 1. Shift if needed. int lz = Long.numberOfLeadingZeros(digits); digits <<= lz; // We want the most significant 64 bits of the product. We know // this will be non-zero because the most significant bit of i is // 1. FastDoubleMath.UInt128 product = fullMultiplication(digits, factorMantissa); long lower = product.low; long upper = product.high; // We know that upper has at most one leading zero because // both i and factor_mantissa have a leading one. This means // that the result is at least as large as ((1<<63)*(1<<63))/(1<<64). // As long as the first 39 bits of "upper" are not "1", then we // know that we have an exact computed value for the leading // 25 bits because any imprecision would play out as a +1, in // the worst case. // Having 25 bits is necessary because // we need 24 bits for the mantissa, but we have to have one rounding bit, and // we can waste a bit if the most significant bit of the product is zero. // We expect this next branch to be rarely taken (say 1% of the time). // When (upper &0x3FFFFFFFFF) == 0x3FFFFFFFFF, it can be common for // lower + i < lower to be true (proba. much higher than 1%). if ((upper & 0x3_FFFFF_FFFFL) == 0x3_FFFFF_FFFFL && Long.compareUnsigned(lower + digits, lower) < 0) { long factor_mantissa_low = MANTISSA_128[power - DOUBLE_MIN_EXPONENT_POWER_OF_TEN]; // next, we compute the 64-bit x 128-bit multiplication, getting a 192-bit // result (three 64-bit values) product = fullMultiplication(digits, factor_mantissa_low); long product_low = product.low; long product_middle2 = product.high; long product_middle1 = lower; long product_high = upper; long product_middle = product_middle1 + product_middle2; if (Long.compareUnsigned(product_middle, product_middle1) < 0) { product_high++; // overflow carry } // we want to check whether mantissa *i + i would affect our result // This does happen, e.g. with 7.3177701707893310e+15 ???? if (((product_middle + 1 == 0) && ((product_high & 0x7_FFFFF_FFFFL) == 0x7_FFFFF_FFFFL) && (product_low + Long.compareUnsigned(digits, product_low) < 0))) { // let us be prudent and bail out. return Float.NaN; } upper = product_high; //lower = product_middle; } // The final mantissa should be 24 bits with a leading 1. // We shift it so that it occupies 25 bits with a leading 1. long upperbit = upper >>> 63; long mantissa = upper >>> (upperbit + 38); lz += (int) (1 ^ upperbit); // Here we have mantissa < (1<<25). //assert mantissa < (1<<25); // We have to round to even. The "to even" part // is only a problem when we are right in between two floating-point values // which we guard against. // If we have lots of trailing zeros, we may fall right between two // floating-point values. if (((upper & 0x3_FFFFF_FFFFL) == 0x3_FFFFF_FFFFL) || ((upper & 0x3_FFFFF_FFFFL) == 0) && (mantissa & 3) == 1) { // if mantissa & 1 == 1 we might need to round up. // // Scenarios: // 1. We are not in the middle. Then we should round up. // // 2. We are right in the middle. Whether we round up depends // on the last significant bit: if it is "one" then we round // up (round to even) otherwise, we do not. // // So if the last significant bit is 1, we can safely round up. // Hence, we only need to bail out if (mantissa & 3) == 1. // Otherwise, we may need more accuracy or analysis to determine whether // we are exactly between two floating-point numbers. // It can be triggered with 1e23. ?? // Note: because the factor_mantissa and factor_mantissa_low are // almost always rounded down (except for small positive powers), // almost always should round up. return Float.NaN; } mantissa += 1; mantissa >>>= 1; // Here we have mantissa < (1<<24), unless there was an overflow if (mantissa >= (1L << FLOAT_SIGNIFICAND_WIDTH)) { // This will happen when parsing values such as 7.2057594037927933e+16 ?? mantissa = (1L << (FLOAT_SIGNIFICAND_WIDTH - 1)); lz--; // undo previous addition } mantissa &= ~(1L << (FLOAT_SIGNIFICAND_WIDTH - 1)); long real_exponent = exponent - lz; // we have to check that real_exponent is in range, otherwise we bail out if ((real_exponent < 1) || (real_exponent > FLOAT_MAX_EXPONENT_POWER_OF_TWO + FLOAT_EXPONENT_BIAS)) { return Float.NaN; } int bits = (int) (mantissa | real_exponent << (FLOAT_SIGNIFICAND_WIDTH - 1) | (isNegative ? 1L << 31 : 0)); return Float.intBitsToFloat(bits); } static float tryHexToFloatWithFastAlgorithm(boolean isNegative, long digits, int power) { if (digits == 0 || power < Float.MIN_EXPONENT - 54) { return isNegative ? -0.0f : 0.0f; } if (power > Float.MAX_EXPONENT) { return isNegative ? Float.NEGATIVE_INFINITY : Float.POSITIVE_INFINITY; } // we start with a fast path // We try to mimic the fast described by Clinger WD for decimal // float number literals. How to read floating point numbers accurately. // ACM SIGPLAN Notices. 1990 if (Long.compareUnsigned(digits, 0x1fffffffffffffL) <= 0) { // convert the integer into a double. This is lossless since // 0 <= i <= 2^53 - 1. float d = (float) digits; // // The general idea is as follows. // If 0 <= s < 2^53 then // 1) Both s and p can be represented exactly as 64-bit floating-point // values (binary64). // 2) Because s and p can be represented exactly as floating-point values, // then s * p will produce correctly rounded values. // d = d * Math.scalb(1f, power); if (isNegative) { d = -d; } return d; } // The fast path has failed return Float.NaN; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy