All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.baomidou.mybatisplus.extension.toolkit.SimpleQuery Maven / Gradle / Ivy

package com.baomidou.mybatisplus.extension.toolkit;

import com.baomidou.mybatisplus.core.conditions.query.LambdaQueryWrapper;
import com.baomidou.mybatisplus.core.mapper.BaseMapper;
import com.baomidou.mybatisplus.core.toolkit.CollectionUtils;
import com.baomidou.mybatisplus.core.toolkit.GlobalConfigUtils;
import com.baomidou.mybatisplus.core.toolkit.LambdaUtils;
import com.baomidou.mybatisplus.core.toolkit.support.SFunction;
import org.apache.ibatis.session.SqlSession;
import org.mybatis.spring.SqlSessionUtils;

import java.util.*;
import java.util.function.*;
import java.util.stream.Collector;
import java.util.stream.Collectors;
import java.util.stream.Stream;
import java.util.stream.StreamSupport;

/**
 * simple-query 让简单的查询更简单
 *
 * @author VampireAchao
 * @since 2021/11/9 18:27
 */
public class SimpleQuery {
    private SimpleQuery() {
        /* Do not new me! */
    }

    /**
     * 通过lambda获取Class
     *
     * @param sFunction 可序列化的lambda
     * @param        Class类型
     * @return 对应的Class
     */
    @SuppressWarnings("unchecked")
    public static  Class getType(SFunction sFunction) {
        return (Class) LambdaUtils.extract(sFunction).getInstantiatedClass();
    }

    /**
     * ignore
     */
    @SafeVarargs
    public static  Map keyMap(LambdaQueryWrapper wrapper, SFunction sFunction, Consumer... peeks) {
        return list2Map(selectList(getType(sFunction), wrapper), sFunction, Function.identity(), peeks);
    }

    /**
     * 传入Wrappers和key,从数据库中根据条件查询出对应的列表,封装成Map
     *
     * @param wrapper    条件构造器
     * @param sFunction  key
     * @param isParallel 是否并行流
     * @param peeks      封装成map时可能需要的后续操作,不需要可以不传
     * @param         实体类型
     * @param         实体中的属性类型
     * @return Map<实体中的属性, 实体>
     */
    @SafeVarargs
    public static  Map keyMap(LambdaQueryWrapper wrapper, SFunction sFunction, boolean isParallel, Consumer... peeks) {
        return list2Map(selectList(getType(sFunction), wrapper), sFunction, Function.identity(), isParallel, peeks);
    }

    /**
     * ignore
     */
    @SafeVarargs
    public static  Map map(LambdaQueryWrapper wrapper, SFunction keyFunc, SFunction valueFunc, Consumer... peeks) {
        return list2Map(selectList(getType(keyFunc), wrapper), keyFunc, valueFunc, peeks);
    }

    /**
     * 传入Wrappers和key,从数据库中根据条件查询出对应的列表,封装成Map
     *
     * @param wrapper    条件构造器
     * @param keyFunc    key
     * @param valueFunc  value
     * @param isParallel 是否并行流
     * @param peeks      封装成map时可能需要的后续操作,不需要可以不传
     * @param         实体类型
     * @param         实体中的属性类型
     * @param 

实体中的属性类型 * @return Map<实体中的属性, 实体> */ @SafeVarargs public static Map map(LambdaQueryWrapper wrapper, SFunction keyFunc, SFunction valueFunc, boolean isParallel, Consumer... peeks) { return list2Map(selectList(getType(keyFunc), wrapper), keyFunc, valueFunc, isParallel, peeks); } /** * ignore */ @SafeVarargs public static Map> group(LambdaQueryWrapper wrapper, SFunction sFunction, Consumer... peeks) { return listGroupBy(selectList(getType(sFunction), wrapper), sFunction, peeks); } /** * ignore */ @SafeVarargs public static Map> group(LambdaQueryWrapper wrapper, SFunction sFunction, boolean isParallel, Consumer... peeks) { return listGroupBy(selectList(getType(sFunction), wrapper), sFunction, isParallel, peeks); } /** * ignore */ @SafeVarargs public static > M group(LambdaQueryWrapper wrapper, SFunction sFunction, Collector downstream, Consumer... peeks) { return listGroupBy(selectList(getType(sFunction), wrapper), sFunction, downstream, false, peeks); } /** * 传入Wrappers和key,从数据库中根据条件查询出对应的列表,封装成Map * * @param wrapper 条件构造器 * @param sFunction 分组依据 * @param downstream 下游操作 * @param isParallel 是否并行流 * @param peeks 后续操作 * @param 实体类型 * @param 实体中的分组依据对应类型,也是Map中key的类型 * @param 下游操作对应返回类型,也是Map中value的类型 * @param 下游操作在进行中间操作时对应类型 * @param 最后返回结果Map类型 * @return Map<实体中的属性, List < 实体>> */ @SafeVarargs public static > M group(LambdaQueryWrapper wrapper, SFunction sFunction, Collector downstream, boolean isParallel, Consumer... peeks) { return listGroupBy(selectList(getType(sFunction), wrapper), sFunction, downstream, isParallel, peeks); } /** * ignore */ @SafeVarargs public static List list(LambdaQueryWrapper wrapper, SFunction sFunction, Consumer... peeks) { return list2List(selectList(getType(sFunction), wrapper), sFunction, peeks); } /** * 传入wrappers和需要的某一列,从数据中根据条件查询出对应的列,转换成list * * @param wrapper 条件构造器 * @param sFunction 需要的列 * @param isParallel 是否并行流 * @param peeks 后续操作 * @return java.util.List * @since 2021/11/9 17:59 */ @SafeVarargs public static List list(LambdaQueryWrapper wrapper, SFunction sFunction, boolean isParallel, Consumer... peeks) { return list2List(selectList(getType(sFunction), wrapper), sFunction, isParallel, peeks); } /** * ignore */ @SafeVarargs public static List list2List(List list, SFunction sFunction, Consumer... peeks) { return list2List(list, sFunction, false, peeks); } /** * 对list进行map、peek操作 * * @param list 数据 * @param sFunction 需要的列 * @param isParallel 是否并行流 * @param peeks 后续操作 * @return java.util.List * @since 2021/11/9 18:01 */ @SafeVarargs public static List list2List(List list, SFunction sFunction, boolean isParallel, Consumer... peeks) { return peekStream(list, isParallel, peeks).map(sFunction).collect(Collectors.toList()); } /** * ignore */ @SafeVarargs public static Map> listGroupBy(List list, SFunction sFunction, Consumer... peeks) { return listGroupBy(list, sFunction, false, peeks); } /** * ignore */ @SafeVarargs public static Map> listGroupBy(List list, SFunction sFunction, boolean isParallel, Consumer... peeks) { return listGroupBy(list, sFunction, Collectors.toList(), isParallel, peeks); } /** * ignore */ @SafeVarargs public static > M listGroupBy(List list, SFunction sFunction, Collector downstream, Consumer... peeks) { return listGroupBy(list, sFunction, downstream, false, peeks); } /** * 对list进行groupBy操作 * * @param list 数据 * @param sFunction 分组的key,依据 * @param downstream 下游操作 * @param isParallel 是否并行流 * @param peeks 封装成map时可能需要的后续操作,不需要可以不传 * @param 实体类型 * @param 实体中的分组依据对应类型,也是Map中key的类型 * @param 下游操作对应返回类型,也是Map中value的类型 * @param 下游操作在进行中间操作时对应类型 * @param 最后返回结果Map类型 * @return Map<实体中的属性, List < 实体>> */ @SafeVarargs @SuppressWarnings("unchecked") public static > M listGroupBy(List list, SFunction sFunction, Collector downstream, boolean isParallel, Consumer... peeks) { boolean hasFinished = downstream.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH); return peekStream(list, isParallel, peeks).collect(new Collector, M>() { @Override public Supplier> supplier() { return HashMap::new; } @Override public BiConsumer, T> accumulator() { return (m, t) -> { // 只此一处,和原版groupingBy修改只此一处,成功在支持下游操作的情况下支持null值 K key = Optional.ofNullable(t).map(sFunction).orElse(null); A container = m.computeIfAbsent(key, k -> downstream.supplier().get()); downstream.accumulator().accept(container, t); }; } @Override public BinaryOperator> combiner() { return (m1, m2) -> { for (Map.Entry e : m2.entrySet()) { m1.merge(e.getKey(), e.getValue(), downstream.combiner()); } return m1; }; } @Override public Function, M> finisher() { return hasFinished ? i -> (M) i : intermediate -> { intermediate.replaceAll((k, v) -> (A) downstream.finisher().apply(v)); @SuppressWarnings("unchecked") M castResult = (M) intermediate; return castResult; }; } @Override public Set characteristics() { return hasFinished ? Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.IDENTITY_FINISH)) : Collections.emptySet(); } }); } /** * ignore */ @SafeVarargs public static Map list2Map(List list, SFunction keyFunc, Function valueFunc, Consumer... peeks) { return list2Map(list, keyFunc, valueFunc, false, peeks); } /** * list转换为map * * @param 实体类型 * @param 实体中的属性类型 * @param

实体中的属性类型 * @param list 数据 * @param keyFunc key * @param isParallel 是否并行流 * @param peeks 封装成map时可能需要的后续操作,不需要可以不传 * @return Map<实体中的属性, 实体> */ @SafeVarargs public static Map list2Map(List list, SFunction keyFunc, Function valueFunc, boolean isParallel, Consumer... peeks) { return peekStream(list, isParallel, peeks).collect(HashMap::new, (m, v) -> m.put(keyFunc.apply(v), valueFunc.apply(v)), HashMap::putAll); } /** * 将list转为Stream流,然后再叠加peek操作 * * @param list 数据 * @param isParallel 是否并行流 * @param peeks 叠加的peek操作 * @param 数据元素类型 * @return 转换后的流 */ @SafeVarargs public static Stream peekStream(List list, boolean isParallel, Consumer... peeks) { if (CollectionUtils.isEmpty(list)) { return Stream.empty(); } return Stream.of(peeks).reduce(StreamSupport.stream(list.spliterator(), isParallel), Stream::peek, Stream::concat); } /** * 通过entityClass查询列表,并关闭sqlSession * * @param entityClass 表对应实体 * @param wrapper 条件构造器 * @param 实体类型 * @return 查询列表结果 */ public static List selectList(Class entityClass, LambdaQueryWrapper wrapper) { SqlSession sqlSession = SqlHelper.sqlSession(entityClass); List result; try { BaseMapper userMapper = SqlHelper.getMapper(entityClass, sqlSession); result = userMapper.selectList(wrapper); } finally { SqlSessionUtils.closeSqlSession(sqlSession, GlobalConfigUtils.currentSessionFactory(entityClass)); } return result; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy