All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.firefly.utils.collection.ArrayTernaryTrie Maven / Gradle / Ivy

package com.firefly.utils.collection;

import java.nio.ByteBuffer;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;

import com.firefly.utils.StringUtils;

/**
 * 

* A Ternary Trie String lookup data structure. *

*

* This Trie is of a fixed size and cannot grow (which can be a good thing with * regards to DOS when used as a cache). *

*

* The Trie is stored in 3 arrays: *

*
*
char[] _tree
*
This is semantically 2 dimensional array flattened into a 1 dimensional * char array. The second dimension is that every 4 sequential elements * represents a row of: character; hi index; eq index; low index, used to build * a ternary trie of key strings.
*
String[] _key
*
An array of key values where each element matches a row in the _tree * array. A non zero key element indicates that the _tree row is a complete key * rather than an intermediate character of a longer key.
*
V[] _value
*
An array of values corresponding to the _key array
*
*

* The lookup of a value will iterate through the _tree array matching * characters. If the equal tree branch is followed, then the _key array is * looked up to see if this is a complete match. If a match is found then the * _value array is looked up to return the matching value. *

*

* This Trie may be instantiated either as case sensitive or insensitive. *

*

* This Trie is not Threadsafe and contains no mutual exclusion or deliberate * memory barriers. It is intended for an ArrayTrie to be built by a single * thread and then used concurrently by multiple threads and not mutated during * that access. If concurrent mutations of the Trie is required external locks * need to be applied. *

* * @param * the Entry type */ public class ArrayTernaryTrie extends AbstractTrie { private static int LO = 1; private static int EQ = 2; private static int HI = 3; /** * The Size of a Trie row is the char, and the low, equal and high child * pointers */ private static final int ROW_SIZE = 4; /** * The Trie rows in a single array which allows a lookup of row,character to * the next row in the Trie. This is actually a 2 dimensional array that has * been flattened to achieve locality of reference. */ private final char[] _tree; /** * The key (if any) for a Trie row. A row may be a leaf, a node or both in * the Trie tree. */ private final String[] _key; /** * The value (if any) for a Trie row. A row may be a leaf, a node or both in * the Trie tree. */ private final V[] _value; /** * The number of rows allocated */ private char _rows; /** * Create a case insensitive Trie of default capacity. */ public ArrayTernaryTrie() { this(128); } /** * Create a Trie of default capacity * * @param insensitive * true if the Trie is insensitive to the case of the key. */ public ArrayTernaryTrie(boolean insensitive) { this(insensitive, 128); } /** * Create a case insensitive Trie * * @param capacity * The capacity of the Trie, which is in the worst case is the * total number of characters of all keys stored in the Trie. The * capacity needed is dependent of the shared prefixes of the * keys. For example, a capacity of 6 nodes is required to store * keys "foo" and "bar", but a capacity of only 4 is required to * store "bar" and "bat". */ public ArrayTernaryTrie(int capacity) { this(true, capacity); } /** * Create a Trie * * @param insensitive * true if the Trie is insensitive to the case of the key. * @param capacity * The capacity of the Trie, which is in the worst case is the * total number of characters of all keys stored in the Trie. The * capacity needed is dependent of the shared prefixes of the * keys. For example, a capacity of 6 nodes is required to store * keys "foo" and "bar", but a capacity of only 4 is required to * store "bar" and "bat". */ @SuppressWarnings("unchecked") public ArrayTernaryTrie(boolean insensitive, int capacity) { super(insensitive); _value = (V[]) new Object[capacity]; _tree = new char[capacity * ROW_SIZE]; _key = new String[capacity]; } /** * Copy Trie and change capacity by a factor * * @param trie * the trie to copy from * @param factor * the factor to grow the capacity by */ public ArrayTernaryTrie(ArrayTernaryTrie trie, double factor) { super(trie.isCaseInsensitive()); int capacity = (int) (trie._value.length * factor); _rows = trie._rows; _value = Arrays.copyOf(trie._value, capacity); _tree = Arrays.copyOf(trie._tree, capacity * ROW_SIZE); _key = Arrays.copyOf(trie._key, capacity); } @Override public boolean put(String s, V v) { int t = 0; int limit = s.length(); int last = 0; for (int k = 0; k < limit; k++) { char c = s.charAt(k); if (isCaseInsensitive() && c < 128) c = StringUtils.lowercases[c]; while (true) { int row = ROW_SIZE * t; // Do we need to create the new row? if (t == _rows) { _rows++; if (_rows >= _key.length) { _rows--; return false; } _tree[row] = c; } char n = _tree[row]; int diff = n - c; if (diff == 0) t = _tree[last = (row + EQ)]; else if (diff < 0) t = _tree[last = (row + LO)]; else t = _tree[last = (row + HI)]; // do we need a new row? if (t == 0) { t = _rows; _tree[last] = (char) t; } if (diff == 0) break; } } // Do we need to create the new row? if (t == _rows) { _rows++; if (_rows >= _key.length) { _rows--; return false; } } // Put the key and value _key[t] = v == null ? null : s; _value[t] = v; return true; } @Override public V get(String s, int offset, int len) { int t = 0; for (int i = 0; i < len;) { char c = s.charAt(offset + i++); if (isCaseInsensitive() && c < 128) c = StringUtils.lowercases[c]; while (true) { int row = ROW_SIZE * t; char n = _tree[row]; int diff = n - c; if (diff == 0) { t = _tree[row + EQ]; if (t == 0) return null; break; } t = _tree[row + hilo(diff)]; if (t == 0) return null; } } return _value[t]; } @Override public V get(ByteBuffer b, int offset, int len) { int t = 0; offset += b.position(); for (int i = 0; i < len;) { byte c = (byte) (b.get(offset + i++) & 0x7f); if (isCaseInsensitive()) c = (byte) StringUtils.lowercases[c]; while (true) { int row = ROW_SIZE * t; char n = _tree[row]; int diff = n - c; if (diff == 0) { t = _tree[row + EQ]; if (t == 0) return null; break; } t = _tree[row + hilo(diff)]; if (t == 0) return null; } } return _value[t]; } @Override public V getBest(String s) { return getBest(0, s, 0, s.length()); } @Override public V getBest(String s, int offset, int length) { return getBest(0, s, offset, length); } private V getBest(int t, String s, int offset, int len) { int node = t; int end = offset + len; loop: while (offset < end) { char c = s.charAt(offset++); len--; if (isCaseInsensitive() && c < 128) c = StringUtils.lowercases[c]; while (true) { int row = ROW_SIZE * t; char n = _tree[row]; int diff = n - c; if (diff == 0) { t = _tree[row + EQ]; if (t == 0) break loop; // if this node is a match, recurse to remember if (_key[t] != null) { node = t; V better = getBest(t, s, offset, len); if (better != null) return better; } break; } t = _tree[row + hilo(diff)]; if (t == 0) break loop; } } return _value[node]; } @Override public V getBest(ByteBuffer b, int offset, int len) { if (b.hasArray()) return getBest(0, b.array(), b.arrayOffset() + b.position() + offset, len); return getBest(0, b, offset, len); } private V getBest(int t, byte[] b, int offset, int len) { int node = t; int end = offset + len; loop: while (offset < end) { byte c = (byte) (b[offset++] & 0x7f); len--; if (isCaseInsensitive()) c = (byte) StringUtils.lowercases[c]; while (true) { int row = ROW_SIZE * t; char n = _tree[row]; int diff = n - c; if (diff == 0) { t = _tree[row + EQ]; if (t == 0) break loop; // if this node is a match, recurse to remember if (_key[t] != null) { node = t; V better = getBest(t, b, offset, len); if (better != null) return better; } break; } t = _tree[row + hilo(diff)]; if (t == 0) break loop; } } return _value[node]; } private V getBest(int t, ByteBuffer b, int offset, int len) { int node = t; int o = offset + b.position(); loop: for (int i = 0; i < len; i++) { byte c = (byte) (b.get(o + i) & 0x7f); if (isCaseInsensitive()) c = (byte) StringUtils.lowercases[c]; while (true) { int row = ROW_SIZE * t; char n = _tree[row]; int diff = n - c; if (diff == 0) { t = _tree[row + EQ]; if (t == 0) break loop; // if this node is a match, recurse to remember if (_key[t] != null) { node = t; V best = getBest(t, b, offset + i + 1, len - i - 1); if (best != null) return best; } break; } t = _tree[row + hilo(diff)]; if (t == 0) break loop; } } return _value[node]; } @Override public String toString() { StringBuilder buf = new StringBuilder(); for (int r = 0; r <= _rows; r++) { if (_key[r] != null && _value[r] != null) { buf.append(','); buf.append(_key[r]); buf.append('='); buf.append(_value[r].toString()); } } if (buf.length() == 0) return "{}"; buf.setCharAt(0, '{'); buf.append('}'); return buf.toString(); } @Override public Set keySet() { Set keys = new HashSet<>(); for (int r = 0; r <= _rows; r++) { if (_key[r] != null && _value[r] != null) keys.add(_key[r]); } return keys; } @Override public boolean isFull() { return _rows + 1 == _key.length; } public static int hilo(int diff) { // branchless equivalent to return ((diff<0)?LO:HI); // return 3+2*((diff&Integer.MIN_VALUE)>>Integer.SIZE-1); return 1 + (diff | Integer.MAX_VALUE) / (Integer.MAX_VALUE / 2); } public void dump() { for (int r = 0; r < _rows; r++) { char c = _tree[r * ROW_SIZE + 0]; System.err.printf("%4d [%s,%d,%d,%d] '%s':%s%n", r, (c < ' ' || c > 127) ? ("" + (int) c) : "'" + c + "'", (int) _tree[r * ROW_SIZE + LO], (int) _tree[r * ROW_SIZE + EQ], (int) _tree[r * ROW_SIZE + HI], _key[r], _value[r]); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy