All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.fireflysource.common.io.BufferUtils Maven / Gradle / Ivy

The newest version!
package com.fireflysource.common.io;

import com.fireflysource.common.collection.CollectionUtils;
import com.fireflysource.common.object.TypeUtils;

import java.io.*;
import java.nio.Buffer;
import java.nio.BufferOverflowException;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;
import java.nio.charset.Charset;
import java.nio.charset.StandardCharsets;
import java.nio.file.StandardOpenOption;
import java.util.Arrays;
import java.util.Collection;
import java.util.List;
import java.util.stream.Collectors;

/**
 * Buffer utility methods.
 * 

The standard JVM {@link ByteBuffer} can exist in two modes: In fill mode the valid * data is between 0 and pos; In flush mode the valid data is between the pos and the limit. * The various ByteBuffer methods assume a mode and some of them will switch or enforce a mode: * Allocate and clear set fill mode; flip and compact switch modes; read and write assume fill * and flush modes. This duality can result in confusing code such as: *

*
 *     buffer.clear();
 *     channel.write(buffer);
 * 
*

* Which looks as if it should write no data, but in fact writes the buffer worth of garbage. *

*

* The BufferUtils class provides a set of utilities that operate on the convention that ByteBuffers * will always be left, passed in an API or returned from a method in the flush mode - ie with * valid data between the pos and limit. This convention is adopted so as to avoid confusion as to * what state a buffer is in and to avoid excessive copying of data that can result with the usage * of compress.

*

* Thus this class provides alternate implementations of {@link #allocate(int)}, * {@link #allocateDirect(int)} and {@link #clear(ByteBuffer)} that leave the buffer * in flush mode. Thus the following tests will pass: *

*
 *     ByteBuffer buffer = BufferUtils.allocate(1024);
 *     assert(buffer.remaining()==0);
 *     BufferUtils.clear(buffer);
 *     assert(buffer.remaining()==0);
 * 
*

If the BufferUtils methods {@link #fill(ByteBuffer, byte[], int, int)}, * {@link #append(ByteBuffer, byte[], int, int)} or {@link #put(ByteBuffer, ByteBuffer)} are used, * then the caller does not need to explicitly switch the buffer to fill mode. * If the caller wishes to use other ByteBuffer bases libraries to fill a buffer, * then they can use explicit calls of #flipToFill(ByteBuffer) and #flipToFlush(ByteBuffer, int) * to change modes. Note because this convention attempts to avoid the copies of compact, the position * is not set to zero on each fill cycle and so its value must be remembered: *

*
 *      int pos = BufferUtils.flipToFill(buffer);
 *      try
 *      {
 *          buffer.put(data);
 *      }
 *      finally
 *      {
 *          flipToFlush(buffer, pos);
 *      }
 * 
*

* The flipToFill method will effectively clear the buffer if it is empty and will compact the buffer if there is no space. *

*/ public class BufferUtils { public static final ByteBuffer EMPTY_BUFFER = ByteBuffer.allocate(0); static final int TEMP_BUFFER_SIZE = 4096; static final byte SPACE = 0x20; static final byte MINUS = '-'; static final byte[] DIGIT = {(byte) '0', (byte) '1', (byte) '2', (byte) '3', (byte) '4', (byte) '5', (byte) '6', (byte) '7', (byte) '8', (byte) '9', (byte) 'A', (byte) 'B', (byte) 'C', (byte) 'D', (byte) 'E', (byte) 'F'}; private final static int[] decDivisors = {1000000000, 100000000, 10000000, 1000000, 100000, 10000, 1000, 100, 10, 1}; private final static int[] hexDivisors = {0x10000000, 0x1000000, 0x100000, 0x10000, 0x1000, 0x100, 0x10, 0x1}; private final static long[] decDivisorsL = {1000000000000000000L, 100000000000000000L, 10000000000000000L, 1000000000000000L, 100000000000000L, 10000000000000L, 1000000000000L, 100000000000L, 10000000000L, 1000000000L, 100000000L, 10000000L, 1000000L, 100000L, 10000L, 1000L, 100L, 10L, 1L}; /** * Allocate ByteBuffer in flush mode. * The position and limit will both be zero, indicating that the buffer is * empty and must be flipped before any data is put to it. * * @param capacity capacity of the allocated ByteBuffer * @return Buffer */ public static ByteBuffer allocate(int capacity) { ByteBuffer buf = ByteBuffer.allocate(capacity); buf.limit(0); return buf; } /** * Allocate ByteBuffer in flush mode. * The position and limit will both be zero, indicating that the buffer is * empty and in flush mode. * * @param capacity capacity of the allocated ByteBuffer * @return Buffer */ public static ByteBuffer allocateDirect(int capacity) { ByteBuffer buf = ByteBuffer.allocateDirect(capacity); buf.limit(0); return buf; } /** * Clear the buffer to be empty in flush mode. * The position and limit are set to 0; * * @param buffer The buffer to clear. */ public static void clear(ByteBuffer buffer) { if (buffer != null) { buffer.position(0); buffer.limit(0); } } /** * Clear the buffer to be empty in fill mode. * The position is set to 0 and the limit is set to the capacity. * * @param buffer The buffer to clear. */ public static void clearToFill(ByteBuffer buffer) { if (buffer != null) { buffer.position(0); buffer.limit(buffer.capacity()); } } /** * Flip the buffer to fill mode. * The position is set to the first unused position in the buffer * (the old limit) and the limit is set to the capacity. * If the buffer is empty, then this call is effectively {@link #clearToFill(ByteBuffer)}. * If there is no unused space to fill, a {@link ByteBuffer#compact()} is done to attempt * to create space. *

* This method is used as a replacement to {@link ByteBuffer#compact()}. * * @param buffer The buffer to flip * @return The position of the valid data before the flipped position. This value should be * passed to a subsequent call to {@link #flipToFlush(ByteBuffer, int)} */ public static int flipToFill(ByteBuffer buffer) { int position = buffer.position(); int limit = buffer.limit(); if (position == limit) { buffer.position(0); buffer.limit(buffer.capacity()); return 0; } int capacity = buffer.capacity(); if (limit == capacity) { buffer.compact(); return 0; } buffer.position(limit); buffer.limit(capacity); return position; } /** * Flip the buffer to Flush mode. * The limit is set to the first unused byte(the old position) and * the position is set to the passed position. *

* This method is used as a replacement of {@link Buffer#flip()}. * * @param buffer the buffer to be flipped * @param position The position of valid data to flip to. This should * be the return value of the previous call to {@link #flipToFill(ByteBuffer)} */ public static void flipToFlush(ByteBuffer buffer, int position) { buffer.limit(buffer.position()); buffer.position(position); } /** * Convert a ByteBuffer to a byte array. * * @param buffer The buffer to convert in flush mode. The buffer is not altered. * @return An array of bytes duplicated from the buffer. */ public static byte[] toArray(ByteBuffer buffer) { if (buffer.hasArray()) { byte[] array = buffer.array(); int from = buffer.arrayOffset() + buffer.position(); return Arrays.copyOfRange(array, from, from + buffer.remaining()); } else { byte[] to = new byte[buffer.remaining()]; buffer.slice().get(to); return to; } } /** * Convert a buffer collection to a byte array. * * @param buffers The buffer to convert in flush mode. The buffer is not altered. * @return An array of bytes duplicated from the buffer. */ public static byte[] toArray(Collection buffers) { List list = buffers.stream().map(BufferUtils::toArray).collect(Collectors.toList()); int count = list.stream().mapToInt(arr -> arr.length).sum(); if (count < 0) { throw new IllegalArgumentException("The buffers are too big"); } byte[] result = new byte[count]; int index = 0; for (byte[] bytes : list) { System.arraycopy(bytes, 0, result, index, bytes.length); index += bytes.length; } return result; } /** * @param buf the buffer to check * @return true if buf is equal to EMPTY_BUFFER */ public static boolean isTheEmptyBuffer(ByteBuffer buf) { @SuppressWarnings("ReferenceEquality") boolean isTheEmptyBuffer_ = (buf == EMPTY_BUFFER); return isTheEmptyBuffer_; } /** * Check for an empty or null buffer. * * @param buf the buffer to check * @return true if the buffer is null or empty. */ public static boolean isEmpty(ByteBuffer buf) { return buf == null || buf.remaining() == 0; } /** * Check for a non null and non empty buffer. * * @param buf the buffer to check * @return true if the buffer is not null and not empty. */ public static boolean hasContent(ByteBuffer buf) { return buf != null && buf.remaining() > 0; } /** * Check for a non null and full buffer. * * @param buf the buffer to check * @return true if the buffer is not null and the limit equals the capacity. */ public static boolean isFull(ByteBuffer buf) { return buf != null && buf.limit() == buf.capacity(); } /** * Get remaining from null checked buffer * * @param buffer The buffer to get the remaining from, in flush mode. * @return 0 if the buffer is null, else the bytes remaining in the buffer. */ public static int length(ByteBuffer buffer) { return buffer == null ? 0 : buffer.remaining(); } /** * Get the space from the limit to the capacity * * @param buffer the buffer to get the space from * @return space */ public static int space(ByteBuffer buffer) { if (buffer == null) return 0; return buffer.capacity() - buffer.limit(); } /** * Compact the buffer * * @param buffer the buffer to compact * @return true if the compact made a full buffer have space */ public static boolean compact(ByteBuffer buffer) { if (buffer.position() == 0) return false; boolean full = buffer.limit() == buffer.capacity(); buffer.compact().flip(); return full && buffer.limit() < buffer.capacity(); } /** * Put data from one buffer into another, avoiding over/under flows * * @param from Buffer to take bytes from in flush mode * @param to Buffer to put bytes to in fill mode. * @return number of bytes moved */ public static int put(ByteBuffer from, ByteBuffer to) { int put; int remaining = from.remaining(); if (remaining > 0) { if (remaining <= to.remaining()) { to.put(from); put = remaining; from.position(from.limit()); } else if (from.hasArray()) { put = to.remaining(); to.put(from.array(), from.arrayOffset() + from.position(), put); from.position(from.position() + put); } else { put = to.remaining(); ByteBuffer slice = from.slice(); slice.limit(put); to.put(slice); from.position(from.position() + put); } } else { put = 0; } return put; } /** * Put data from one buffer into another, avoiding over/under flows * * @param from Buffer to take bytes from in flush mode * @param to Buffer to put bytes to in flush mode. The buffer is flipToFill before the put and flipToFlush after. * @return number of bytes moved * @deprecated use {@link #append(ByteBuffer, ByteBuffer)} */ public static int flipPutFlip(ByteBuffer from, ByteBuffer to) { return append(to, from); } /** * Append bytes to a buffer. * * @param to Buffer is flush mode * @param b bytes to append * @param off offset into byte * @param len length to append * @throws BufferOverflowException if unable to append buffer due to space limits */ public static void append(ByteBuffer to, byte[] b, int off, int len) throws BufferOverflowException { int pos = flipToFill(to); try { to.put(b, off, len); } finally { flipToFlush(to, pos); } } /** * Appends a byte to a buffer * * @param to Buffer is flush mode * @param b byte to append */ public static void append(ByteBuffer to, byte b) { int pos = flipToFill(to); try { to.put(b); } finally { flipToFlush(to, pos); } } /** * Appends a buffer to a buffer * * @param to Buffer is flush mode * @param b buffer to append * @return The position of the valid data before the flipped position. */ public static int append(ByteBuffer to, ByteBuffer b) { int pos = flipToFill(to); try { return put(b, to); } finally { flipToFlush(to, pos); } } /** * Like append, but does not throw {@link BufferOverflowException} * * @param to Buffer The buffer to fill to. The buffer will be flipped to fill mode and then flipped back to flush mode. * @param b bytes The bytes to fill * @param off offset into bytes * @param len length to fill * @return the number of bytes taken from the buffer. */ public static int fill(ByteBuffer to, byte[] b, int off, int len) { int pos = flipToFill(to); try { int remaining = to.remaining(); int take = remaining < len ? remaining : len; to.put(b, off, take); return take; } finally { flipToFlush(to, pos); } } public static void readFrom(File file, ByteBuffer buffer) throws IOException { try (RandomAccessFile raf = new RandomAccessFile(file, "r")) { FileChannel channel = raf.getChannel(); long needed = raf.length(); while (needed > 0 && buffer.hasRemaining()) needed = needed - channel.read(buffer); } } public static void readFrom(InputStream is, int needed, ByteBuffer buffer) throws IOException { ByteBuffer tmp = allocate(8192); while (needed > 0 && buffer.hasRemaining()) { int l = is.read(tmp.array(), 0, 8192); if (l < 0) break; tmp.position(0); tmp.limit(l); buffer.put(tmp); } } public static void writeTo(ByteBuffer buffer, OutputStream out) throws IOException { if (buffer.hasArray()) { out.write(buffer.array(), buffer.arrayOffset() + buffer.position(), buffer.remaining()); // update buffer position, in way similar to non-array version of writeTo buffer.position(buffer.position() + buffer.remaining()); } else { byte[] bytes = new byte[TEMP_BUFFER_SIZE]; while (buffer.hasRemaining()) { int byteCountToWrite = Math.min(buffer.remaining(), TEMP_BUFFER_SIZE); buffer.get(bytes, 0, byteCountToWrite); out.write(bytes, 0, byteCountToWrite); } } } /** * Convert the buffer to an ISO-8859-1 String * * @param buffer The buffer to convert in flush mode. The buffer is unchanged * @return The buffer as a string. */ public static String toString(ByteBuffer buffer) { return toString(buffer, StandardCharsets.ISO_8859_1); } /** * Convert the buffer to an UTF-8 String * * @param buffer The buffer to convert in flush mode. The buffer is unchanged * @return The buffer as a string. */ public static String toUTF8String(ByteBuffer buffer) { return toString(buffer, StandardCharsets.UTF_8); } /** * Convert the buffer to an ISO-8859-1 String * * @param buffer The buffer to convert in flush mode. The buffer is unchanged * @param charset The {@link Charset} to use to convert the bytes * @return The buffer as a string. */ public static String toString(ByteBuffer buffer, Charset charset) { if (buffer == null) return null; byte[] array = buffer.hasArray() ? buffer.array() : null; if (array == null) { byte[] to = new byte[buffer.remaining()]; buffer.slice().get(to); return new String(to, 0, to.length, charset); } return new String(array, buffer.arrayOffset() + buffer.position(), buffer.remaining(), charset); } public static String toString(List buffers, Charset charset) { ByteBuffer buffer = merge(buffers); if (buffer.hasRemaining()) { return toString(buffer, charset); } else { return ""; } } /** * Convert a partial buffer to a String. * * @param buffer the buffer to convert * @param position The position in the buffer to start the string from * @param length The length of the buffer * @param charset The {@link Charset} to use to convert the bytes * @return The buffer as a string. */ public static String toString(ByteBuffer buffer, int position, int length, Charset charset) { if (buffer == null) return null; byte[] array = buffer.hasArray() ? buffer.array() : null; if (array == null) { ByteBuffer ro = buffer.asReadOnlyBuffer(); ro.position(position); ro.limit(position + length); byte[] to = new byte[length]; ro.get(to); return new String(to, 0, to.length, charset); } return new String(array, buffer.arrayOffset() + position, length, charset); } /** * Convert buffer to an integer. Parses up to the first non-numeric character. If no number is found an IllegalArgumentException is thrown * * @param buffer A buffer containing an integer in flush mode. The position is not changed. * @return an int */ public static int toInt(ByteBuffer buffer) { return toInt(buffer, buffer.position(), buffer.remaining()); } /** * Convert buffer to an integer. Parses up to the first non-numeric character. If no number is found an * IllegalArgumentException is thrown * * @param buffer A buffer containing an integer in flush mode. The position is not changed. * @param position the position in the buffer to start reading from * @param length the length of the buffer to use for conversion * @return an int of the buffer bytes */ public static int toInt(ByteBuffer buffer, int position, int length) { int val = 0; boolean started = false; boolean minus = false; int limit = position + length; if (length <= 0) throw new NumberFormatException(toString(buffer, position, length, StandardCharsets.UTF_8)); for (int i = position; i < limit; i++) { byte b = buffer.get(i); if (b <= SPACE) { if (started) break; } else if (b >= '0' && b <= '9') { val = val * 10 + (b - '0'); started = true; } else if (b == MINUS && !started) { minus = true; } else break; } if (started) return minus ? (-val) : val; throw new NumberFormatException(toString(buffer)); } /** * Convert buffer to an integer. Parses up to the first non-numeric character. If no number is found an IllegalArgumentException is thrown * * @param buffer A buffer containing an integer in flush mode. The position is updated. * @return an int */ public static int takeInt(ByteBuffer buffer) { int val = 0; boolean started = false; boolean minus = false; int i; for (i = buffer.position(); i < buffer.limit(); i++) { byte b = buffer.get(i); if (b <= SPACE) { if (started) break; } else if (b >= '0' && b <= '9') { val = val * 10 + (b - '0'); started = true; } else if (b == MINUS && !started) { minus = true; } else break; } if (started) { buffer.position(i); return minus ? (-val) : val; } throw new NumberFormatException(toString(buffer)); } /** * Convert buffer to an long. Parses up to the first non-numeric character. If no number is found an IllegalArgumentException is thrown * * @param buffer A buffer containing an integer in flush mode. The position is not changed. * @return an int */ public static long toLong(ByteBuffer buffer) { long val = 0; boolean started = false; boolean minus = false; for (int i = buffer.position(); i < buffer.limit(); i++) { byte b = buffer.get(i); if (b <= SPACE) { if (started) break; } else if (b >= '0' && b <= '9') { val = val * 10L + (b - '0'); started = true; } else if (b == MINUS && !started) { minus = true; } else break; } if (started) return minus ? (-val) : val; throw new NumberFormatException(toString(buffer)); } public static void putHexInt(ByteBuffer buffer, int n) { if (n < 0) { buffer.put((byte) '-'); if (n == Integer.MIN_VALUE) { buffer.put((byte) (0x7f & '8')); buffer.put((byte) (0x7f & '0')); buffer.put((byte) (0x7f & '0')); buffer.put((byte) (0x7f & '0')); buffer.put((byte) (0x7f & '0')); buffer.put((byte) (0x7f & '0')); buffer.put((byte) (0x7f & '0')); buffer.put((byte) (0x7f & '0')); return; } n = -n; } if (n < 0x10) { buffer.put(DIGIT[n]); } else { boolean started = false; // This assumes constant time int arithmatic for (int hexDivisor : hexDivisors) { if (n < hexDivisor) { if (started) buffer.put((byte) '0'); continue; } started = true; int d = n / hexDivisor; buffer.put(DIGIT[d]); n = n - d * hexDivisor; } } } public static void putDecInt(ByteBuffer buffer, int n) { if (n < 0) { buffer.put((byte) '-'); if (n == Integer.MIN_VALUE) { buffer.put((byte) '2'); n = 147483648; } else n = -n; } if (n < 10) { buffer.put(DIGIT[n]); } else { boolean started = false; // This assumes constant time int arithmatic for (int decDivisor : decDivisors) { if (n < decDivisor) { if (started) buffer.put((byte) '0'); continue; } started = true; int d = n / decDivisor; buffer.put(DIGIT[d]); n = n - d * decDivisor; } } } public static void putDecLong(ByteBuffer buffer, long n) { if (n < 0) { buffer.put((byte) '-'); if (n == Long.MIN_VALUE) { buffer.put((byte) '9'); n = 223372036854775808L; } else n = -n; } if (n < 10) { buffer.put(DIGIT[(int) n]); } else { boolean started = false; // This assumes constant time int arithmatic for (long aDecDivisorsL : decDivisorsL) { if (n < aDecDivisorsL) { if (started) buffer.put((byte) '0'); continue; } started = true; long d = n / aDecDivisorsL; buffer.put(DIGIT[(int) d]); n = n - d * aDecDivisorsL; } } } public static ByteBuffer toBuffer(int value) { ByteBuffer buf = ByteBuffer.allocate(32); putDecInt(buf, value); return buf; } public static ByteBuffer toBuffer(long value) { ByteBuffer buf = ByteBuffer.allocate(32); putDecLong(buf, value); return buf; } public static ByteBuffer toBuffer(String s) { return toBuffer(s, StandardCharsets.ISO_8859_1); } public static ByteBuffer toBuffer(String s, Charset charset) { if (s == null) return EMPTY_BUFFER; return toBuffer(s.getBytes(charset)); } /** * Create a new ByteBuffer using provided byte array. * * @param array the byte array to back buffer with. * @return ByteBuffer with provided byte array, in flush mode */ public static ByteBuffer toBuffer(byte[] array) { if (array == null) return EMPTY_BUFFER; return toBuffer(array, 0, array.length); } /** * Create a new ByteBuffer using the provided byte array. * * @param array the byte array to use. * @param offset the offset within the byte array to use from * @param length the length in bytes of the array to use * @return ByteBuffer with provided byte array, in flush mode */ public static ByteBuffer toBuffer(byte[] array, int offset, int length) { if (array == null) return EMPTY_BUFFER; return ByteBuffer.wrap(array, offset, length); } public static ByteBuffer toDirectBuffer(String s) { return toDirectBuffer(s, StandardCharsets.ISO_8859_1); } public static ByteBuffer toDirectBuffer(String s, Charset charset) { if (s == null) return EMPTY_BUFFER; byte[] bytes = s.getBytes(charset); ByteBuffer buf = ByteBuffer.allocateDirect(bytes.length); buf.put(bytes); buf.flip(); return buf; } public static ByteBuffer toMappedBuffer(File file) throws IOException { try (FileChannel channel = FileChannel.open(file.toPath(), StandardOpenOption.READ)) { return channel.map(FileChannel.MapMode.READ_ONLY, 0, file.length()); } } /** * @param buffer the buffer to test * @return {@code false} * @deprecated don't use - there is no way to reliably tell if a ByteBuffer is mapped. */ @Deprecated public static boolean isMappedBuffer(ByteBuffer buffer) { return false; } public static String toSummaryString(ByteBuffer buffer) { if (buffer == null) return "null"; StringBuilder buf = new StringBuilder(); buf.append("[p="); buf.append(buffer.position()); buf.append(",l="); buf.append(buffer.limit()); buf.append(",c="); buf.append(buffer.capacity()); buf.append(",r="); buf.append(buffer.remaining()); buf.append("]"); return buf.toString(); } public static String toDetailString(ByteBuffer[] buffer) { StringBuilder builder = new StringBuilder(); builder.append('['); for (int i = 0; i < buffer.length; i++) { if (i > 0) builder.append(','); builder.append(toDetailString(buffer[i])); } builder.append(']'); return builder.toString(); } /** * Convert Buffer to string ID independent of content */ private static void idString(ByteBuffer buffer, StringBuilder out) { out.append(buffer.getClass().getSimpleName()); out.append("@"); if (buffer.hasArray() && buffer.arrayOffset() == 4) { out.append('T'); byte[] array = buffer.array(); TypeUtils.toHex(array[0], out); TypeUtils.toHex(array[1], out); TypeUtils.toHex(array[2], out); TypeUtils.toHex(array[3], out); } else out.append(Integer.toHexString(System.identityHashCode(buffer))); } /** * Convert Buffer to string ID independent of content * * @param buffer the buffet to generate a string ID from * @return A string showing the buffer ID */ public static String toIDString(ByteBuffer buffer) { StringBuilder buf = new StringBuilder(); idString(buffer, buf); return buf.toString(); } /** * Convert Buffer to a detail debug string of pointers and content * * @param buffer the buffer to generate a detail string from * @return A string showing the pointers and content of the buffer */ public static String toDetailString(ByteBuffer buffer) { if (buffer == null) return "null"; StringBuilder buf = new StringBuilder(); idString(buffer, buf); buf.append("[p="); buf.append(buffer.position()); buf.append(",l="); buf.append(buffer.limit()); buf.append(",c="); buf.append(buffer.capacity()); buf.append(",r="); buf.append(buffer.remaining()); buf.append("]={"); appendDebugString(buf, buffer); buf.append("}"); return buf.toString(); } private static void appendDebugString(StringBuilder buf, ByteBuffer buffer) { try { for (int i = 0; i < buffer.position(); i++) { appendContentChar(buf, buffer.get(i)); if (i == 16 && buffer.position() > 32) { buf.append("..."); i = buffer.position() - 16; } } buf.append("<<<"); for (int i = buffer.position(); i < buffer.limit(); i++) { appendContentChar(buf, buffer.get(i)); if (i == buffer.position() + 16 && buffer.limit() > buffer.position() + 32) { buf.append("..."); i = buffer.limit() - 16; } } buf.append(">>>"); int limit = buffer.limit(); buffer.limit(buffer.capacity()); for (int i = limit; i < buffer.capacity(); i++) { appendContentChar(buf, buffer.get(i)); if (i == limit + 16 && buffer.capacity() > limit + 32) { buf.append("..."); i = buffer.capacity() - 16; } } buffer.limit(limit); } catch (Throwable x) { buf.append("!!concurrent mod!!"); } } private static void appendContentChar(StringBuilder buf, byte b) { if (b == '\\') buf.append("\\\\"); else if ((b >= 0x20) && (b <= 0x7E)) // limit to 7-bit printable US-ASCII character space buf.append((char) b); else if (b == '\r') buf.append("\\r"); else if (b == '\n') buf.append("\\n"); else if (b == '\t') buf.append("\\t"); else buf.append("\\x").append(TypeUtils.toHexString(b)); } /** * Convert buffer to a Hex Summary String. * * @param buffer the buffer to generate a hex byte summary from * @return A string showing a summary of the content in hex */ public static String toHexSummary(ByteBuffer buffer) { if (buffer == null) return "null"; StringBuilder buf = new StringBuilder(); buf.append("b[").append(buffer.remaining()).append("]="); for (int i = buffer.position(); i < buffer.limit(); i++) { TypeUtils.toHex(buffer.get(i), buf); if (i == buffer.position() + 24 && buffer.limit() > buffer.position() + 32) { buf.append("..."); i = buffer.limit() - 8; } } return buf.toString(); } /** * Convert buffer to a Hex String. * * @param buffer the buffer to generate a hex byte summary from * @return A hex string */ public static String toHexString(ByteBuffer buffer) { if (buffer == null) return "null"; return TypeUtils.toHexString(toArray(buffer)); } public static void putCRLF(ByteBuffer buffer) { buffer.put((byte) 13); buffer.put((byte) 10); } public static boolean isPrefix(ByteBuffer prefix, ByteBuffer buffer) { if (prefix.remaining() > buffer.remaining()) return false; int bi = buffer.position(); for (int i = prefix.position(); i < prefix.limit(); i++) { if (prefix.get(i) != buffer.get(bi++)) { return false; } } return true; } public static ByteBuffer ensureCapacity(ByteBuffer buffer, int capacity) { if (buffer == null) { return allocate(capacity); } if (buffer.capacity() >= capacity) { return buffer; } if (buffer.hasArray()) { return ByteBuffer.wrap( Arrays.copyOfRange(buffer.array(), buffer.arrayOffset(), buffer.arrayOffset() + capacity), buffer.position(), buffer.remaining()); } else { ByteBuffer newBuffer = allocateDirect(capacity); append(newBuffer, buffer); flipToFill(buffer); return newBuffer; } } public static ByteBuffer addCapacity(ByteBuffer buffer, int capacity) { int srcPos = buffer.position(); int newCapacity = srcPos + capacity; ByteBuffer newBuffer; if (buffer.hasArray()) { newBuffer = ByteBuffer.wrap(Arrays.copyOfRange(buffer.array(), buffer.arrayOffset(), buffer.arrayOffset() + newCapacity)); newBuffer.position(srcPos); } else { newBuffer = BufferUtils.allocateDirect(newCapacity); BufferUtils.flipToFill(newBuffer); BufferUtils.flipToFlush(buffer, 0); newBuffer.put(buffer); } return newBuffer; } public static ByteBuffer merge(List buffers) { if (CollectionUtils.isEmpty(buffers)) return EMPTY_BUFFER; int size = buffers.stream().collect(Collectors.summingInt(ByteBuffer::remaining)); if (size == 0) return EMPTY_BUFFER; ByteBuffer newBuffer = allocate(size); int pos = flipToFill(newBuffer); buffers.forEach(srcBuffer -> put(srcBuffer, newBuffer)); flipToFlush(newBuffer, pos); return newBuffer; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy