All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.fitbur.bouncycastle.crypto.engines.AESLightEngine Maven / Gradle / Ivy

There is a newer version: 1.0.0
Show newest version
package com.fitbur.bouncycastle.crypto.engines;

import com.fitbur.bouncycastle.crypto.BlockCipher;
import com.fitbur.bouncycastle.crypto.CipherParameters;
import com.fitbur.bouncycastle.crypto.DataLengthException;
import com.fitbur.bouncycastle.crypto.OutputLengthException;
import com.fitbur.bouncycastle.crypto.params.KeyParameter;

/**
 * an implementation of the AES (Rijndael), from FIPS-197.
 * 

* For further com.fitburtails see: http://csrc.nist.gov/encryption/aes/. * * This implementation is based on optimizations from Dr. Brian Gladman's paper and C code at * http://fp.gladman.plus.com.fitbur/cryptography_technology/rijndael/ * * There are three levels of tradeoff of speed vs memory * Because java has no preprocessor, they are written as three separate classes from which to choose * * The fastest uses 8Kbytes of static tables to precompute round calculations, 4 256 word tables for encryption * and 4 for com.fitburcryption. * * The middle performance version uses only one 256 word table for each, for a total of 2Kbytes, * adding 12 rotate operations per round to com.fitburpute the values contained in the other tables from * the contents of the first * * The slowest version uses no static tables at all and com.fitburputes the values * in each round. *

* This file contains the slowest performance version with no static tables * for round precomputation, but it has the smallest foot print. * */ public class AESLightEngine implements BlockCipher { // The S box private static final byte[] S = { (byte)99, (byte)124, (byte)119, (byte)123, (byte)242, (byte)107, (byte)111, (byte)197, (byte)48, (byte)1, (byte)103, (byte)43, (byte)254, (byte)215, (byte)171, (byte)118, (byte)202, (byte)130, (byte)201, (byte)125, (byte)250, (byte)89, (byte)71, (byte)240, (byte)173, (byte)212, (byte)162, (byte)175, (byte)156, (byte)164, (byte)114, (byte)192, (byte)183, (byte)253, (byte)147, (byte)38, (byte)54, (byte)63, (byte)247, (byte)204, (byte)52, (byte)165, (byte)229, (byte)241, (byte)113, (byte)216, (byte)49, (byte)21, (byte)4, (byte)199, (byte)35, (byte)195, (byte)24, (byte)150, (byte)5, (byte)154, (byte)7, (byte)18, (byte)128, (byte)226, (byte)235, (byte)39, (byte)178, (byte)117, (byte)9, (byte)131, (byte)44, (byte)26, (byte)27, (byte)110, (byte)90, (byte)160, (byte)82, (byte)59, (byte)214, (byte)179, (byte)41, (byte)227, (byte)47, (byte)132, (byte)83, (byte)209, (byte)0, (byte)237, (byte)32, (byte)252, (byte)177, (byte)91, (byte)106, (byte)203, (byte)190, (byte)57, (byte)74, (byte)76, (byte)88, (byte)207, (byte)208, (byte)239, (byte)170, (byte)251, (byte)67, (byte)77, (byte)51, (byte)133, (byte)69, (byte)249, (byte)2, (byte)127, (byte)80, (byte)60, (byte)159, (byte)168, (byte)81, (byte)163, (byte)64, (byte)143, (byte)146, (byte)157, (byte)56, (byte)245, (byte)188, (byte)182, (byte)218, (byte)33, (byte)16, (byte)255, (byte)243, (byte)210, (byte)205, (byte)12, (byte)19, (byte)236, (byte)95, (byte)151, (byte)68, (byte)23, (byte)196, (byte)167, (byte)126, (byte)61, (byte)100, (byte)93, (byte)25, (byte)115, (byte)96, (byte)129, (byte)79, (byte)220, (byte)34, (byte)42, (byte)144, (byte)136, (byte)70, (byte)238, (byte)184, (byte)20, (byte)222, (byte)94, (byte)11, (byte)219, (byte)224, (byte)50, (byte)58, (byte)10, (byte)73, (byte)6, (byte)36, (byte)92, (byte)194, (byte)211, (byte)172, (byte)98, (byte)145, (byte)149, (byte)228, (byte)121, (byte)231, (byte)200, (byte)55, (byte)109, (byte)141, (byte)213, (byte)78, (byte)169, (byte)108, (byte)86, (byte)244, (byte)234, (byte)101, (byte)122, (byte)174, (byte)8, (byte)186, (byte)120, (byte)37, (byte)46, (byte)28, (byte)166, (byte)180, (byte)198, (byte)232, (byte)221, (byte)116, (byte)31, (byte)75, (byte)189, (byte)139, (byte)138, (byte)112, (byte)62, (byte)181, (byte)102, (byte)72, (byte)3, (byte)246, (byte)14, (byte)97, (byte)53, (byte)87, (byte)185, (byte)134, (byte)193, (byte)29, (byte)158, (byte)225, (byte)248, (byte)152, (byte)17, (byte)105, (byte)217, (byte)142, (byte)148, (byte)155, (byte)30, (byte)135, (byte)233, (byte)206, (byte)85, (byte)40, (byte)223, (byte)140, (byte)161, (byte)137, (byte)13, (byte)191, (byte)230, (byte)66, (byte)104, (byte)65, (byte)153, (byte)45, (byte)15, (byte)176, (byte)84, (byte)187, (byte)22, }; // The inverse S-box private static final byte[] Si = { (byte)82, (byte)9, (byte)106, (byte)213, (byte)48, (byte)54, (byte)165, (byte)56, (byte)191, (byte)64, (byte)163, (byte)158, (byte)129, (byte)243, (byte)215, (byte)251, (byte)124, (byte)227, (byte)57, (byte)130, (byte)155, (byte)47, (byte)255, (byte)135, (byte)52, (byte)142, (byte)67, (byte)68, (byte)196, (byte)222, (byte)233, (byte)203, (byte)84, (byte)123, (byte)148, (byte)50, (byte)166, (byte)194, (byte)35, (byte)61, (byte)238, (byte)76, (byte)149, (byte)11, (byte)66, (byte)250, (byte)195, (byte)78, (byte)8, (byte)46, (byte)161, (byte)102, (byte)40, (byte)217, (byte)36, (byte)178, (byte)118, (byte)91, (byte)162, (byte)73, (byte)109, (byte)139, (byte)209, (byte)37, (byte)114, (byte)248, (byte)246, (byte)100, (byte)134, (byte)104, (byte)152, (byte)22, (byte)212, (byte)164, (byte)92, (byte)204, (byte)93, (byte)101, (byte)182, (byte)146, (byte)108, (byte)112, (byte)72, (byte)80, (byte)253, (byte)237, (byte)185, (byte)218, (byte)94, (byte)21, (byte)70, (byte)87, (byte)167, (byte)141, (byte)157, (byte)132, (byte)144, (byte)216, (byte)171, (byte)0, (byte)140, (byte)188, (byte)211, (byte)10, (byte)247, (byte)228, (byte)88, (byte)5, (byte)184, (byte)179, (byte)69, (byte)6, (byte)208, (byte)44, (byte)30, (byte)143, (byte)202, (byte)63, (byte)15, (byte)2, (byte)193, (byte)175, (byte)189, (byte)3, (byte)1, (byte)19, (byte)138, (byte)107, (byte)58, (byte)145, (byte)17, (byte)65, (byte)79, (byte)103, (byte)220, (byte)234, (byte)151, (byte)242, (byte)207, (byte)206, (byte)240, (byte)180, (byte)230, (byte)115, (byte)150, (byte)172, (byte)116, (byte)34, (byte)231, (byte)173, (byte)53, (byte)133, (byte)226, (byte)249, (byte)55, (byte)232, (byte)28, (byte)117, (byte)223, (byte)110, (byte)71, (byte)241, (byte)26, (byte)113, (byte)29, (byte)41, (byte)197, (byte)137, (byte)111, (byte)183, (byte)98, (byte)14, (byte)170, (byte)24, (byte)190, (byte)27, (byte)252, (byte)86, (byte)62, (byte)75, (byte)198, (byte)210, (byte)121, (byte)32, (byte)154, (byte)219, (byte)192, (byte)254, (byte)120, (byte)205, (byte)90, (byte)244, (byte)31, (byte)221, (byte)168, (byte)51, (byte)136, (byte)7, (byte)199, (byte)49, (byte)177, (byte)18, (byte)16, (byte)89, (byte)39, (byte)128, (byte)236, (byte)95, (byte)96, (byte)81, (byte)127, (byte)169, (byte)25, (byte)181, (byte)74, (byte)13, (byte)45, (byte)229, (byte)122, (byte)159, (byte)147, (byte)201, (byte)156, (byte)239, (byte)160, (byte)224, (byte)59, (byte)77, (byte)174, (byte)42, (byte)245, (byte)176, (byte)200, (byte)235, (byte)187, (byte)60, (byte)131, (byte)83, (byte)153, (byte)97, (byte)23, (byte)43, (byte)4, (byte)126, (byte)186, (byte)119, (byte)214, (byte)38, (byte)225, (byte)105, (byte)20, (byte)99, (byte)85, (byte)33, (byte)12, (byte)125, }; // vector used in calculating key schedule (powers of x in GF(256)) private static final int[] rcon = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91 }; private static int shift(int r, int shift) { return (r >>> shift) | (r << -shift); } /* multiply four bytes in GF(2^8) by 'x' {02} in parallel */ private static final int m1 = 0x80808080; private static final int m2 = 0x7f7f7f7f; private static final int m3 = 0x0000001b; private static int FFmulX(int x) { return (((x & m2) << 1) ^ (((x & m1) >>> 7) * m3)); } /* The following com.fitburfines provide alternative com.fitburfinitions of FFmulX that might give improved performance if a fast 32-bit multiply is not available. private int FFmulX(int x) { int u = x & m1; u |= (u >> 1); return ((x & m2) << 1) ^ ((u >>> 3) | (u >>> 6)); } private static final int m4 = 0x1b1b1b1b; private int FFmulX(int x) { int u = x & m1; return ((x & m2) << 1) ^ ((u - (u >>> 7)) & m4); } */ private static int mcol(int x) { int f2 = FFmulX(x); return f2 ^ shift(x ^ f2, 8) ^ shift(x, 16) ^ shift(x, 24); } private static int inv_mcol(int x) { int f2 = FFmulX(x); int f4 = FFmulX(f2); int f8 = FFmulX(f4); int f9 = x ^ f8; return f2 ^ f4 ^ f8 ^ shift(f2 ^ f9, 8) ^ shift(f4 ^ f9, 16) ^ shift(f9, 24); } private static int subWord(int x) { return (S[x&255]&255 | ((S[(x>>8)&255]&255)<<8) | ((S[(x>>16)&255]&255)<<16) | S[(x>>24)&255]<<24); } /** * Calculate the necessary round keys * The number of calculations com.fitburpends on key size and block size * AES specified a fixed block size of 128 bits and key sizes 128/192/256 bits * This code is written assuming those are the only possible values */ private int[][] generateWorkingKey( byte[] key, boolean forEncryption) { int KC = key.length / 4; // key length in words int t; if (((KC != 4) && (KC != 6) && (KC != 8)) || ((KC * 4) != key.length)) { throw new IllegalArgumentException("Key length not 128/192/256 bits."); } ROUNDS = KC + 6; // This is not always true for the generalized Rijndael that allows larger block sizes int[][] W = new int[ROUNDS+1][4]; // 4 words in a block // // copy the key into the round key array // t = 0; int i = 0; while (i < key.length) { W[t >> 2][t & 3] = (key[i]&0xff) | ((key[i+1]&0xff) << 8) | ((key[i+2]&0xff) << 16) | (key[i+3] << 24); i+=4; t++; } // // while not enough round key material calculated // calculate new values // int k = (ROUNDS + 1) << 2; for (i = KC; (i < k); i++) { int temp = W[(i-1)>>2][(i-1)&3]; if ((i % KC) == 0) { temp = subWord(shift(temp, 8)) ^ rcon[(i / KC)-1]; } else if ((KC > 6) && ((i % KC) == 4)) { temp = subWord(temp); } W[i>>2][i&3] = W[(i - KC)>>2][(i-KC)&3] ^ temp; } if (!forEncryption) { for (int j = 1; j < ROUNDS; j++) { for (i = 0; i < 4; i++) { W[j][i] = inv_mcol(W[j][i]); } } } return W; } private int ROUNDS; private int[][] WorkingKey = null; private int C0, C1, C2, C3; private boolean forEncryption; private static final int BLOCK_SIZE = 16; /** * com.fitburfault constructor - 128 bit block size. */ public AESLightEngine() { } /** * initialise an AES cipher. * * @param forEncryption whether or not we are for encryption. * @param params the parameters required to set up the cipher. * @exception IllegalArgumentException if the params argument is * inappropriate. */ public void init( boolean forEncryption, CipherParameters params) { if (params instanceof KeyParameter) { WorkingKey = generateWorkingKey(((KeyParameter)params).getKey(), forEncryption); this.forEncryption = forEncryption; return; } throw new IllegalArgumentException("invalid parameter passed to AES init - " + params.getClass().getName()); } public String getAlgorithmName() { return "AES"; } public int getBlockSize() { return BLOCK_SIZE; } public int processBlock( byte[] in, int inOff, byte[] out, int outOff) { if (WorkingKey == null) { throw new IllegalStateException("AES engine not initialised"); } if ((inOff + (32 / 2)) > in.length) { throw new DataLengthException("input buffer too short"); } if ((outOff + (32 / 2)) > out.length) { throw new OutputLengthException("output buffer too short"); } if (forEncryption) { unpackBlock(in, inOff); encryptBlock(WorkingKey); packBlock(out, outOff); } else { unpackBlock(in, inOff); com.fitburcryptBlock(WorkingKey); packBlock(out, outOff); } return BLOCK_SIZE; } public void reset() { } private void unpackBlock( byte[] bytes, int off) { int index = off; C0 = (bytes[index++] & 0xff); C0 |= (bytes[index++] & 0xff) << 8; C0 |= (bytes[index++] & 0xff) << 16; C0 |= bytes[index++] << 24; C1 = (bytes[index++] & 0xff); C1 |= (bytes[index++] & 0xff) << 8; C1 |= (bytes[index++] & 0xff) << 16; C1 |= bytes[index++] << 24; C2 = (bytes[index++] & 0xff); C2 |= (bytes[index++] & 0xff) << 8; C2 |= (bytes[index++] & 0xff) << 16; C2 |= bytes[index++] << 24; C3 = (bytes[index++] & 0xff); C3 |= (bytes[index++] & 0xff) << 8; C3 |= (bytes[index++] & 0xff) << 16; C3 |= bytes[index++] << 24; } private void packBlock( byte[] bytes, int off) { int index = off; bytes[index++] = (byte)C0; bytes[index++] = (byte)(C0 >> 8); bytes[index++] = (byte)(C0 >> 16); bytes[index++] = (byte)(C0 >> 24); bytes[index++] = (byte)C1; bytes[index++] = (byte)(C1 >> 8); bytes[index++] = (byte)(C1 >> 16); bytes[index++] = (byte)(C1 >> 24); bytes[index++] = (byte)C2; bytes[index++] = (byte)(C2 >> 8); bytes[index++] = (byte)(C2 >> 16); bytes[index++] = (byte)(C2 >> 24); bytes[index++] = (byte)C3; bytes[index++] = (byte)(C3 >> 8); bytes[index++] = (byte)(C3 >> 16); bytes[index++] = (byte)(C3 >> 24); } private void encryptBlock(int[][] KW) { int t0 = this.C0 ^ KW[0][0]; int t1 = this.C1 ^ KW[0][1]; int t2 = this.C2 ^ KW[0][2]; int r = 1, r0, r1, r2, r3 = this.C3 ^ KW[0][3]; while (r < ROUNDS - 1) { r0 = mcol((S[t0&255]&255) ^ ((S[(t1>>8)&255]&255)<<8) ^ ((S[(t2>>16)&255]&255)<<16) ^ (S[(r3>>24)&255]<<24)) ^ KW[r][0]; r1 = mcol((S[t1&255]&255) ^ ((S[(t2>>8)&255]&255)<<8) ^ ((S[(r3>>16)&255]&255)<<16) ^ (S[(t0>>24)&255]<<24)) ^ KW[r][1]; r2 = mcol((S[t2&255]&255) ^ ((S[(r3>>8)&255]&255)<<8) ^ ((S[(t0>>16)&255]&255)<<16) ^ (S[(t1>>24)&255]<<24)) ^ KW[r][2]; r3 = mcol((S[r3&255]&255) ^ ((S[(t0>>8)&255]&255)<<8) ^ ((S[(t1>>16)&255]&255)<<16) ^ (S[(t2>>24)&255]<<24)) ^ KW[r++][3]; t0 = mcol((S[r0&255]&255) ^ ((S[(r1>>8)&255]&255)<<8) ^ ((S[(r2>>16)&255]&255)<<16) ^ (S[(r3>>24)&255]<<24)) ^ KW[r][0]; t1 = mcol((S[r1&255]&255) ^ ((S[(r2>>8)&255]&255)<<8) ^ ((S[(r3>>16)&255]&255)<<16) ^ (S[(r0>>24)&255]<<24)) ^ KW[r][1]; t2 = mcol((S[r2&255]&255) ^ ((S[(r3>>8)&255]&255)<<8) ^ ((S[(r0>>16)&255]&255)<<16) ^ (S[(r1>>24)&255]<<24)) ^ KW[r][2]; r3 = mcol((S[r3&255]&255) ^ ((S[(r0>>8)&255]&255)<<8) ^ ((S[(r1>>16)&255]&255)<<16) ^ (S[(r2>>24)&255]<<24)) ^ KW[r++][3]; } r0 = mcol((S[t0&255]&255) ^ ((S[(t1>>8)&255]&255)<<8) ^ ((S[(t2>>16)&255]&255)<<16) ^ (S[(r3>>24)&255]<<24)) ^ KW[r][0]; r1 = mcol((S[t1&255]&255) ^ ((S[(t2>>8)&255]&255)<<8) ^ ((S[(r3>>16)&255]&255)<<16) ^ (S[(t0>>24)&255]<<24)) ^ KW[r][1]; r2 = mcol((S[t2&255]&255) ^ ((S[(r3>>8)&255]&255)<<8) ^ ((S[(t0>>16)&255]&255)<<16) ^ (S[(t1>>24)&255]<<24)) ^ KW[r][2]; r3 = mcol((S[r3&255]&255) ^ ((S[(t0>>8)&255]&255)<<8) ^ ((S[(t1>>16)&255]&255)<<16) ^ (S[(t2>>24)&255]<<24)) ^ KW[r++][3]; // the final round is a simple function of S this.C0 = (S[r0&255]&255) ^ ((S[(r1>>8)&255]&255)<<8) ^ ((S[(r2>>16)&255]&255)<<16) ^ (S[(r3>>24)&255]<<24) ^ KW[r][0]; this.C1 = (S[r1&255]&255) ^ ((S[(r2>>8)&255]&255)<<8) ^ ((S[(r3>>16)&255]&255)<<16) ^ (S[(r0>>24)&255]<<24) ^ KW[r][1]; this.C2 = (S[r2&255]&255) ^ ((S[(r3>>8)&255]&255)<<8) ^ ((S[(r0>>16)&255]&255)<<16) ^ (S[(r1>>24)&255]<<24) ^ KW[r][2]; this.C3 = (S[r3&255]&255) ^ ((S[(r0>>8)&255]&255)<<8) ^ ((S[(r1>>16)&255]&255)<<16) ^ (S[(r2>>24)&255]<<24) ^ KW[r][3]; } private void com.fitburcryptBlock(int[][] KW) { int t0 = this.C0 ^ KW[ROUNDS][0]; int t1 = this.C1 ^ KW[ROUNDS][1]; int t2 = this.C2 ^ KW[ROUNDS][2]; int r = ROUNDS - 1, r0, r1, r2, r3 = this.C3 ^ KW[ROUNDS][3]; while (r > 1) { r0 = inv_mcol((Si[t0&255]&255) ^ ((Si[(r3>>8)&255]&255)<<8) ^ ((Si[(t2>>16)&255]&255)<<16) ^ (Si[(t1>>24)&255]<<24)) ^ KW[r][0]; r1 = inv_mcol((Si[t1&255]&255) ^ ((Si[(t0>>8)&255]&255)<<8) ^ ((Si[(r3>>16)&255]&255)<<16) ^ (Si[(t2>>24)&255]<<24)) ^ KW[r][1]; r2 = inv_mcol((Si[t2&255]&255) ^ ((Si[(t1>>8)&255]&255)<<8) ^ ((Si[(t0>>16)&255]&255)<<16) ^ (Si[(r3>>24)&255]<<24)) ^ KW[r][2]; r3 = inv_mcol((Si[r3&255]&255) ^ ((Si[(t2>>8)&255]&255)<<8) ^ ((Si[(t1>>16)&255]&255)<<16) ^ (Si[(t0>>24)&255]<<24)) ^ KW[r--][3]; t0 = inv_mcol((Si[r0&255]&255) ^ ((Si[(r3>>8)&255]&255)<<8) ^ ((Si[(r2>>16)&255]&255)<<16) ^ (Si[(r1>>24)&255]<<24)) ^ KW[r][0]; t1 = inv_mcol((Si[r1&255]&255) ^ ((Si[(r0>>8)&255]&255)<<8) ^ ((Si[(r3>>16)&255]&255)<<16) ^ (Si[(r2>>24)&255]<<24)) ^ KW[r][1]; t2 = inv_mcol((Si[r2&255]&255) ^ ((Si[(r1>>8)&255]&255)<<8) ^ ((Si[(r0>>16)&255]&255)<<16) ^ (Si[(r3>>24)&255]<<24)) ^ KW[r][2]; r3 = inv_mcol((Si[r3&255]&255) ^ ((Si[(r2>>8)&255]&255)<<8) ^ ((Si[(r1>>16)&255]&255)<<16) ^ (Si[(r0>>24)&255]<<24)) ^ KW[r--][3]; } r0 = inv_mcol((Si[t0&255]&255) ^ ((Si[(r3>>8)&255]&255)<<8) ^ ((Si[(t2>>16)&255]&255)<<16) ^ (Si[(t1>>24)&255]<<24)) ^ KW[r][0]; r1 = inv_mcol((Si[t1&255]&255) ^ ((Si[(t0>>8)&255]&255)<<8) ^ ((Si[(r3>>16)&255]&255)<<16) ^ (Si[(t2>>24)&255]<<24)) ^ KW[r][1]; r2 = inv_mcol((Si[t2&255]&255) ^ ((Si[(t1>>8)&255]&255)<<8) ^ ((Si[(t0>>16)&255]&255)<<16) ^ (Si[(r3>>24)&255]<<24)) ^ KW[r][2]; r3 = inv_mcol((Si[r3&255]&255) ^ ((Si[(t2>>8)&255]&255)<<8) ^ ((Si[(t1>>16)&255]&255)<<16) ^ (Si[(t0>>24)&255]<<24)) ^ KW[r][3]; // the final round's table is a simple function of Si this.C0 = (Si[r0&255]&255) ^ ((Si[(r3>>8)&255]&255)<<8) ^ ((Si[(r2>>16)&255]&255)<<16) ^ (Si[(r1>>24)&255]<<24) ^ KW[0][0]; this.C1 = (Si[r1&255]&255) ^ ((Si[(r0>>8)&255]&255)<<8) ^ ((Si[(r3>>16)&255]&255)<<16) ^ (Si[(r2>>24)&255]<<24) ^ KW[0][1]; this.C2 = (Si[r2&255]&255) ^ ((Si[(r1>>8)&255]&255)<<8) ^ ((Si[(r0>>16)&255]&255)<<16) ^ (Si[(r3>>24)&255]<<24) ^ KW[0][2]; this.C3 = (Si[r3&255]&255) ^ ((Si[(r2>>8)&255]&255)<<8) ^ ((Si[(r1>>16)&255]&255)<<16) ^ (Si[(r0>>24)&255]<<24) ^ KW[0][3]; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy