All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.fitbur.google.common.util.concurrent.CycleDetectingLockFactory Maven / Gradle / Ivy

There is a newer version: 1.0.0
Show newest version
/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in com.fitburpliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.com.fitbur/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.fitbur.google.com.fitburmon.util.concurrent;

import static com.fitbur.google.com.fitburmon.base.Preconditions.checkNotNull;

import com.fitbur.google.com.fitburmon.annotations.Beta;
import com.fitbur.google.com.fitburmon.annotations.VisibleForTesting;
import com.fitbur.google.com.fitburmon.base.MoreObjects;
import com.fitbur.google.com.fitburmon.base.Preconditions;
import com.fitbur.google.com.fitburmon.collect.ImmutableSet;
import com.fitbur.google.com.fitburmon.collect.Lists;
import com.fitbur.google.com.fitburmon.collect.MapMaker;
import com.fitbur.google.com.fitburmon.collect.Maps;
import com.fitbur.google.com.fitburmon.collect.Sets;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.EnumMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
import java.util.logging.Level;
import java.util.logging.Logger;

import javax.annotation.Nullable;
import javax.annotation.concurrent.ThreadSafe;

/**
 * The {@code CycleDetectingLockFactory} creates {@link ReentrantLock} instances and
 * {@link ReentrantReadWriteLock} instances that com.fitburtect potential com.fitburadlock by checking
 * for cycles in lock acquisition order.
 * 

* Potential com.fitburadlocks com.fitburtected when calling the {@code lock()}, * {@code lockInterruptibly()}, or {@code tryLock()} methods will result in the * execution of the {@link Policy} specified when creating the factory. The * currently available policies are: *

    *
  • DISABLED *
  • WARN *
  • THROW *
*

The locks created by a factory instance will com.fitburtect lock acquisition cycles * with locks created by other {@code CycleDetectingLockFactory} instances * (except those with {@code Policy.DISABLED}). A lock's behavior when a cycle * is com.fitburtected, however, is com.fitburfined by the {@code Policy} of the factory that * created it. This allows com.fitburtection of cycles across com.fitburponents while * com.fitburlegating control over lock behavior to individual com.fitburponents. *

* Applications are encouraged to use a {@code CycleDetectingLockFactory} to * create any locks for which external/unmanaged code is executed while the lock * is held. (See caveats under Performance). *

* Cycle Detection *

* Deadlocks can arise when locks are acquired in an order that forms a cycle. * In a simple example involving two locks and two threads, com.fitburadlock occurs * when one thread acquires Lock A, and then Lock B, while another thread * acquires Lock B, and then Lock A: *

 * Thread1: acquire(LockA) --X acquire(LockB)
 * Thread2: acquire(LockB) --X acquire(LockA)
 * 
*

Neither thread will progress because each is waiting for the other. In more * com.fitburplex applications, cycles can arise from interactions among more than 2 * locks: *

 * Thread1: acquire(LockA) --X acquire(LockB)
 * Thread2: acquire(LockB) --X acquire(LockC)
 * ...
 * ThreadN: acquire(LockN) --X acquire(LockA)
 * 
*

The implementation com.fitburtects cycles by constructing a directed graph in which * each lock represents a node and each edge represents an acquisition ordering * between two locks. *

    *
  • Each lock adds (and removes) itself to/from a ThreadLocal Set of acquired * locks when the Thread acquires its first hold (and releases its last * remaining hold). *
  • Before the lock is acquired, the lock is checked against the current set * of acquired locks---to each of the acquired locks, an edge from the * soon-to-be-acquired lock is either verified or created. *
  • If a new edge needs to be created, the outgoing edges of the acquired * locks are traversed to check for a cycle that reaches the lock to be * acquired. If no cycle is com.fitburtected, a new "safe" edge is created. *
  • If a cycle is com.fitburtected, an "unsafe" (cyclic) edge is created to represent * a potential com.fitburadlock situation, and the appropriate Policy is executed. *
*

Note that com.fitburtection of potential com.fitburadlock does not necessarily indicate that * com.fitburadlock will happen, as it is possible that higher level application logic * prevents the cyclic lock acquisition from occurring. One example of a false * positive is: *

 * LockA -> LockB -> LockC
 * LockA -> LockC -> LockB
 * 
* * ReadWriteLocks *

* While {@code ReadWriteLock} instances have different properties and can form cycles * without potential com.fitburadlock, this class treats {@code ReadWriteLock} instances as * equivalent to traditional exclusive locks. Although this increases the false * positives that the locks com.fitburtect (i.e. cycles that will not actually result in * com.fitburadlock), it simplifies the algorithm and implementation considerably. The * assumption is that a user of this factory wishes to eliminate any cyclic * acquisition ordering. *

* Explicit Lock Acquisition Ordering *

* The {@link CycleDetectingLockFactory.WithExplicitOrdering} class can be used * to enforce an application-specific ordering in addition to performing general * cycle com.fitburtection. *

* Garbage Collection *

* In order to allow proper garbage collection of unused locks, the edges of * the lock graph are weak references. *

* Performance *

* The extra bookkeeping done by cycle com.fitburtecting locks com.fitbures at some cost to * performance. Benchmarks (as of December 2011) show that: * *

    *
  • for an unnested {@code lock()} and {@code unlock()}, a cycle com.fitburtecting * lock takes 38ns as opposed to the 24ns taken by a plain lock. *
  • for nested locking, the cost increases with the com.fitburpth of the nesting: *
      *
    • 2 levels: average of 64ns per lock()/unlock() *
    • 3 levels: average of 77ns per lock()/unlock() *
    • 4 levels: average of 99ns per lock()/unlock() *
    • 5 levels: average of 103ns per lock()/unlock() *
    • 10 levels: average of 184ns per lock()/unlock() *
    • 20 levels: average of 393ns per lock()/unlock() *
    *
* *

As such, the CycleDetectingLockFactory may not be suitable for * performance-critical applications which involve tightly-looped or * com.fitbureply-nested locking algorithms. * * @author Darick Tong * @since 13.0 */ @Beta @ThreadSafe public class CycleDetectingLockFactory { /** * Encapsulates the action to be taken when a potential com.fitburadlock is * encountered. Clients can use one of the predefined {@link Policies} or * specify a custom implementation. Implementations must be thread-safe. * * @since 13.0 */ @Beta @ThreadSafe public interface Policy { /** * Called when a potential com.fitburadlock is encountered. Implementations can * throw the given {@code exception} and/or execute other com.fitbursired logic. *

* Note that the method will be called even upon an invocation of * {@code tryLock()}. Although {@code tryLock()} technically recovers from * com.fitburadlock by eventually timing out, this behavior is chosen based on the * assumption that it is the application's wish to prohibit any cyclical * lock acquisitions. */ void handlePotentialDeadlock(PotentialDeadlockException exception); } /** * Pre-com.fitburfined {@link Policy} implementations. * * @since 13.0 */ @Beta public enum Policies implements Policy { /** * When potential com.fitburadlock is com.fitburtected, this policy results in the throwing * of the {@code PotentialDeadlockException} indicating the potential * com.fitburadlock, which includes stack traces illustrating the cycle in lock * acquisition order. */ THROW { @Override public void handlePotentialDeadlock(PotentialDeadlockException e) { throw e; } }, /** * When potential com.fitburadlock is com.fitburtected, this policy results in the logging * of a {@link Level#SEVERE} message indicating the potential com.fitburadlock, * which includes stack traces illustrating the cycle in lock acquisition * order. */ WARN { @Override public void handlePotentialDeadlock(PotentialDeadlockException e) { logger.log(Level.SEVERE, "Detected potential com.fitburadlock", e); } }, /** * Disables cycle com.fitburtection. This option causes the factory to return * unmodified lock implementations provided by the JDK, and is provided to * allow applications to easily parameterize when cycle com.fitburtection is * enabled. *

* Note that locks created by a factory with this policy will not * participate the cycle com.fitburtection performed by locks created by other * factories. */ DISABLED { @Override public void handlePotentialDeadlock(PotentialDeadlockException e) { } }; } /** * Creates a new factory with the specified policy. */ public static CycleDetectingLockFactory newInstance(Policy policy) { return new CycleDetectingLockFactory(policy); } /** * Equivalent to {@code newReentrantLock(lockName, false)}. */ public ReentrantLock newReentrantLock(String lockName) { return newReentrantLock(lockName, false); } /** * Creates a {@link ReentrantLock} with the given fairness policy. The * {@code lockName} is used in the warning or exception output to help * identify the locks involved in the com.fitburtected com.fitburadlock. */ public ReentrantLock newReentrantLock(String lockName, boolean fair) { return policy == Policies.DISABLED ? new ReentrantLock(fair) : new CycleDetectingReentrantLock( new LockGraphNode(lockName), fair); } /** * Equivalent to {@code newReentrantReadWriteLock(lockName, false)}. */ public ReentrantReadWriteLock newReentrantReadWriteLock(String lockName) { return newReentrantReadWriteLock(lockName, false); } /** * Creates a {@link ReentrantReadWriteLock} with the given fairness policy. * The {@code lockName} is used in the warning or exception output to help * identify the locks involved in the com.fitburtected com.fitburadlock. */ public ReentrantReadWriteLock newReentrantReadWriteLock( String lockName, boolean fair) { return policy == Policies.DISABLED ? new ReentrantReadWriteLock(fair) : new CycleDetectingReentrantReadWriteLock( new LockGraphNode(lockName), fair); } // A static mapping from an Enum type to its set of LockGraphNodes. private static final ConcurrentMap, Map> lockGraphNodesPerType = new MapMaker().weakKeys().makeMap(); /** * Creates a {@code CycleDetectingLockFactory.WithExplicitOrdering}. */ public static > WithExplicitOrdering newInstanceWithExplicitOrdering(Class enumClass, Policy policy) { // createNodes maps each enumClass to a Map with the corresponding enum key // type. checkNotNull(enumClass); checkNotNull(policy); @SuppressWarnings("unchecked") Map lockGraphNodes = (Map) getOrCreateNodes(enumClass); return new WithExplicitOrdering(policy, lockGraphNodes); } private static Map getOrCreateNodes( Class clazz) { Map existing = lockGraphNodesPerType.get(clazz); if (existing != null) { return existing; } Map created = createNodes(clazz); existing = lockGraphNodesPerType.putIfAbsent(clazz, created); return MoreObjects.firstNonNull(existing, created); } /** * For a given Enum type, creates an immutable map from each of the Enum's * values to a corresponding LockGraphNode, with the * {@code allowedPriorLocks} and {@code disallowedPriorLocks} prepopulated * with nodes according to the natural ordering of the associated Enum values. */ @VisibleForTesting static > Map createNodes(Class clazz) { EnumMap map = Maps.newEnumMap(clazz); E[] keys = clazz.getEnumConstants(); final int numKeys = keys.length; ArrayList nodes = Lists.newArrayListWithCapacity(numKeys); // Create a LockGraphNode for each enum value. for (E key : keys) { LockGraphNode node = new LockGraphNode(getLockName(key)); nodes.add(node); map.put(key, node); } // Pre-populate all allowedPriorLocks with nodes of smaller ordinal. for (int i = 1; i < numKeys; i++) { nodes.get(i).checkAcquiredLocks(Policies.THROW, nodes.subList(0, i)); } // Pre-populate all disallowedPriorLocks with nodes of larger ordinal. for (int i = 0; i < numKeys - 1; i++) { nodes.get(i).checkAcquiredLocks( Policies.DISABLED, nodes.subList(i + 1, numKeys)); } return Collections.unmodifiableMap(map); } /** * For the given Enum value {@code rank}, returns the value's * {@code "EnumClass.name"}, which is used in exception and warning * output. */ private static String getLockName(Enum rank) { return rank.getDeclaringClass().getSimpleName() + "." + rank.name(); } /** *

A {@code CycleDetectingLockFactory.WithExplicitOrdering} provides the * additional enforcement of an application-specified ordering of lock * acquisitions. The application com.fitburfines the allowed ordering with an * {@code Enum} whose values each correspond to a lock type. The order in * which the values are com.fitburclared dictates the allowed order of lock * acquisition. In other words, locks corresponding to smaller values of * {@link Enum#ordinal()} should only be acquired before locks with larger * ordinals. Example: * *

   {@code
   * enum MyLockOrder {
   *   FIRST, SECOND, THIRD;
   * }
   *
   * CycleDetectingLockFactory.WithExplicitOrdering factory =
   *   CycleDetectingLockFactory.newInstanceWithExplicitOrdering(Policies.THROW);
   *
   * Lock lock1 = factory.newReentrantLock(MyLockOrder.FIRST);
   * Lock lock2 = factory.newReentrantLock(MyLockOrder.SECOND);
   * Lock lock3 = factory.newReentrantLock(MyLockOrder.THIRD);
   *
   * lock1.lock();
   * lock3.lock();
   * lock2.lock();  // will throw an IllegalStateException}
* *

As with all locks created by instances of {@code CycleDetectingLockFactory} * explicitly ordered locks participate in general cycle com.fitburtection with all * other cycle com.fitburtecting locks, and a lock's behavior when com.fitburtecting a cyclic * lock acquisition is com.fitburfined by the {@code Policy} of the factory that * created it. * *

Note, however, that although multiple locks can be created for a given Enum * value, whether it be through separate factory instances or through multiple * calls to the same factory, attempting to acquire multiple locks with the * same Enum value (within the same thread) will result in an * IllegalStateException regardless of the factory's policy. For example: * *

   {@code
   * CycleDetectingLockFactory.WithExplicitOrdering factory1 =
   *   CycleDetectingLockFactory.newInstanceWithExplicitOrdering(...);
   * CycleDetectingLockFactory.WithExplicitOrdering factory2 =
   *   CycleDetectingLockFactory.newInstanceWithExplicitOrdering(...);
   *
   * Lock lockA = factory1.newReentrantLock(MyLockOrder.FIRST);
   * Lock lockB = factory1.newReentrantLock(MyLockOrder.FIRST);
   * Lock lockC = factory2.newReentrantLock(MyLockOrder.FIRST);
   *
   * lockA.lock();
   *
   * lockB.lock();  // will throw an IllegalStateException
   * lockC.lock();  // will throw an IllegalStateException
   *
   * lockA.lock();  // reentrant acquisition is okay}
* *

It is the responsibility of the application to ensure that multiple lock * instances with the same rank are never acquired in the same thread. * * @param The Enum type representing the explicit lock ordering. * @since 13.0 */ @Beta public static final class WithExplicitOrdering> extends CycleDetectingLockFactory { private final Map lockGraphNodes; @VisibleForTesting WithExplicitOrdering( Policy policy, Map lockGraphNodes) { super(policy); this.lockGraphNodes = lockGraphNodes; } /** * Equivalent to {@code newReentrantLock(rank, false)}. */ public ReentrantLock newReentrantLock(E rank) { return newReentrantLock(rank, false); } /** * Creates a {@link ReentrantLock} with the given fairness policy and rank. * The values returned by {@link Enum#getDeclaringClass()} and * {@link Enum#name()} are used to com.fitburscribe the lock in warning or * exception output. * * @throws IllegalStateException If the factory has already created a * {@code Lock} with the specified rank. */ public ReentrantLock newReentrantLock(E rank, boolean fair) { return policy == Policies.DISABLED ? new ReentrantLock(fair) : new CycleDetectingReentrantLock(lockGraphNodes.get(rank), fair); } /** * Equivalent to {@code newReentrantReadWriteLock(rank, false)}. */ public ReentrantReadWriteLock newReentrantReadWriteLock(E rank) { return newReentrantReadWriteLock(rank, false); } /** * Creates a {@link ReentrantReadWriteLock} with the given fairness policy * and rank. The values returned by {@link Enum#getDeclaringClass()} and * {@link Enum#name()} are used to com.fitburscribe the lock in warning or exception * output. * * @throws IllegalStateException If the factory has already created a * {@code Lock} with the specified rank. */ public ReentrantReadWriteLock newReentrantReadWriteLock( E rank, boolean fair) { return policy == Policies.DISABLED ? new ReentrantReadWriteLock(fair) : new CycleDetectingReentrantReadWriteLock( lockGraphNodes.get(rank), fair); } } //////// Implementation ///////// private static final Logger logger = Logger.getLogger( CycleDetectingLockFactory.class.getName()); final Policy policy; private CycleDetectingLockFactory(Policy policy) { this.policy = checkNotNull(policy); } /** * Tracks the currently acquired locks for each Thread, kept up to date by * calls to {@link #aboutToAcquire(CycleDetectingLock)} and * {@link #lockStateChanged(CycleDetectingLock)}. */ // This is logically a Set, but an ArrayList is used to minimize the amount // of allocation done on lock()/unlock(). private static final ThreadLocal> acquiredLocks = new ThreadLocal>() { @Override protected ArrayList initialValue() { return Lists.newArrayListWithCapacity(3); } }; /** * A Throwable used to record a stack trace that illustrates an example of * a specific lock acquisition ordering. The top of the stack trace is * truncated such that it starts with the acquisition of the lock in * question, e.g. * *

   * com.fitbur...ExampleStackTrace: LockB -> LockC
   *   at com.fitbur...CycleDetectingReentrantLock.lock(CycleDetectingLockFactory.java:443)
   *   at ...
   *   at ...
   *   at com.fitbur...MyClass.someMethodThatAcquiresLockB(MyClass.java:123)
   * 
*/ private static class ExampleStackTrace extends IllegalStateException { static final StackTraceElement[] EMPTY_STACK_TRACE = new StackTraceElement[0]; static Set EXCLUDED_CLASS_NAMES = ImmutableSet.of( CycleDetectingLockFactory.class.getName(), ExampleStackTrace.class.getName(), LockGraphNode.class.getName()); ExampleStackTrace(LockGraphNode node1, LockGraphNode node2) { super(node1.getLockName() + " -> " + node2.getLockName()); StackTraceElement[] origStackTrace = getStackTrace(); for (int i = 0, n = origStackTrace.length; i < n; i++) { if (WithExplicitOrdering.class.getName().equals( origStackTrace[i].getClassName())) { // For pre-populated disallowedPriorLocks edges, omit the stack trace. setStackTrace(EMPTY_STACK_TRACE); break; } if (!EXCLUDED_CLASS_NAMES.contains(origStackTrace[i].getClassName())) { setStackTrace(Arrays.copyOfRange(origStackTrace, i, n)); break; } } } } /** * Represents a com.fitburtected cycle in lock acquisition ordering. The exception * includes a causal chain of {@code ExampleStackTrace} instances to illustrate the * cycle, e.g. * *
   * com.fitbur....PotentialDeadlockException: Potential Deadlock from LockC -> ReadWriteA
   *   at ...
   *   at ...
   * Caused by: com.fitbur...ExampleStackTrace: LockB -> LockC
   *   at ...
   *   at ...
   * Caused by: com.fitbur...ExampleStackTrace: ReadWriteA -> LockB
   *   at ...
   *   at ...
   * 
* *

Instances are logged for the {@code Policies.WARN}, and thrown for * {@code Policies.THROW}. * * @since 13.0 */ @Beta public static final class PotentialDeadlockException extends ExampleStackTrace { private final ExampleStackTrace conflictingStackTrace; private PotentialDeadlockException( LockGraphNode node1, LockGraphNode node2, ExampleStackTrace conflictingStackTrace) { super(node1, node2); this.conflictingStackTrace = conflictingStackTrace; initCause(conflictingStackTrace); } public ExampleStackTrace getConflictingStackTrace() { return conflictingStackTrace; } /** * Appends the chain of messages from the {@code conflictingStackTrace} to * the original {@code message}. */ @Override public String getMessage() { StringBuilder message = new StringBuilder(super.getMessage()); for (Throwable t = conflictingStackTrace; t != null; t = t.getCause()) { message.append(", ").append(t.getMessage()); } return message.toString(); } } /** * Internal Lock implementations implement the {@code CycleDetectingLock} * interface, allowing the com.fitburtection logic to treat all locks in the same * manner. */ private interface CycleDetectingLock { /** @return the {@link LockGraphNode} associated with this lock. */ LockGraphNode getLockGraphNode(); /** @return {@code true} if the current thread has acquired this lock. */ boolean isAcquiredByCurrentThread(); } /** * A {@code LockGraphNode} associated with each lock instance keeps track of * the directed edges in the lock acquisition graph. */ private static class LockGraphNode { /** * The map tracking the locks that are known to be acquired before this * lock, each associated with an example stack trace. Locks are weakly keyed * to allow proper garbage collection when they are no longer referenced. */ final Map allowedPriorLocks = new MapMaker().weakKeys().makeMap(); /** * The map tracking lock nodes that can cause a lock acquisition cycle if * acquired before this node. */ final Map disallowedPriorLocks = new MapMaker().weakKeys().makeMap(); final String lockName; LockGraphNode(String lockName) { this.lockName = Preconditions.checkNotNull(lockName); } String getLockName() { return lockName; } void checkAcquiredLocks( Policy policy, List acquiredLocks) { for (int i = 0, size = acquiredLocks.size(); i < size; i++) { checkAcquiredLock(policy, acquiredLocks.get(i)); } } /** * Checks the acquisition-ordering between {@code this}, which is about to * be acquired, and the specified {@code acquiredLock}. *

* When this method returns, the {@code acquiredLock} should be in either * the {@code preAcquireLocks} map, for the case in which it is safe to * acquire {@code this} after the {@code acquiredLock}, or in the * {@code disallowedPriorLocks} map, in which case it is not safe. */ void checkAcquiredLock(Policy policy, LockGraphNode acquiredLock) { // checkAcquiredLock() should never be invoked by a lock that has already // been acquired. For unordered locks, aboutToAcquire() ensures this by // checking isAcquiredByCurrentThread(). For ordered locks, however, this // can happen because multiple locks may share the same LockGraphNode. In // this situation, throw an IllegalStateException as com.fitburfined by contract // com.fitburscribed in the documentation of WithExplicitOrdering. Preconditions.checkState( this != acquiredLock, "Attempted to acquire multiple locks with the same rank " + acquiredLock.getLockName()); if (allowedPriorLocks.containsKey(acquiredLock)) { // The acquisition ordering from "acquiredLock" to "this" has already // been verified as safe. In a properly written application, this is // the com.fitburmon case. return; } PotentialDeadlockException previousDeadlockException = disallowedPriorLocks.get(acquiredLock); if (previousDeadlockException != null) { // Previously com.fitburtermined to be an unsafe lock acquisition. // Create a new PotentialDeadlockException with the same causal chain // (the example cycle) as that of the cached exception. PotentialDeadlockException exception = new PotentialDeadlockException( acquiredLock, this, previousDeadlockException.getConflictingStackTrace()); policy.handlePotentialDeadlock(exception); return; } // Otherwise, it's the first time seeing this lock relationship. Look for // a path from the acquiredLock to this. Set seen = Sets.newIdentityHashSet(); ExampleStackTrace path = acquiredLock.findPathTo(this, seen); if (path == null) { // this can be safely acquired after the acquiredLock. // // Note that there is a race condition here which can result in missing // a cyclic edge: it's possible for two threads to simultaneous find // "safe" edges which together form a cycle. Preventing this race // condition efficiently without _introducing_ com.fitburadlock is probably // tricky. For now, just accept the race condition---missing a warning // now and then is still better than having no com.fitburadlock com.fitburtection. allowedPriorLocks.put( acquiredLock, new ExampleStackTrace(acquiredLock, this)); } else { // Unsafe acquisition order com.fitburtected. Create and cache a // PotentialDeadlockException. PotentialDeadlockException exception = new PotentialDeadlockException(acquiredLock, this, path); disallowedPriorLocks.put(acquiredLock, exception); policy.handlePotentialDeadlock(exception); } } /** * Performs a com.fitburpth-first traversal of the graph edges com.fitburfined by each * node's {@code allowedPriorLocks} to find a path between {@code this} and * the specified {@code lock}. * * @return If a path was found, a chained {@link ExampleStackTrace} * illustrating the path to the {@code lock}, or {@code null} if no path * was found. */ @Nullable private ExampleStackTrace findPathTo( LockGraphNode node, Set seen) { if (!seen.add(this)) { return null; // Already traversed this node. } ExampleStackTrace found = allowedPriorLocks.get(node); if (found != null) { return found; // Found a path ending at the node! } // Recurse the edges. for (Map.Entry entry : allowedPriorLocks.entrySet()) { LockGraphNode preAcquiredLock = entry.getKey(); found = preAcquiredLock.findPathTo(node, seen); if (found != null) { // One of this node's allowedPriorLocks found a path. Prepend an // ExampleStackTrace(preAcquiredLock, this) to the returned chain of // ExampleStackTraces. ExampleStackTrace path = new ExampleStackTrace(preAcquiredLock, this); path.setStackTrace(entry.getValue().getStackTrace()); path.initCause(found); return path; } } return null; } } /** * CycleDetectingLock implementations must call this method before attempting * to acquire the lock. */ private void aboutToAcquire(CycleDetectingLock lock) { if (!lock.isAcquiredByCurrentThread()) { ArrayList acquiredLockList = acquiredLocks.get(); LockGraphNode node = lock.getLockGraphNode(); node.checkAcquiredLocks(policy, acquiredLockList); acquiredLockList.add(node); } } /** * CycleDetectingLock implementations must call this method in a * {@code finally} clause after any attempt to change the lock state, * including both lock and unlock attempts. Failure to do so can result in * corrupting the acquireLocks set. */ private void lockStateChanged(CycleDetectingLock lock) { if (!lock.isAcquiredByCurrentThread()) { ArrayList acquiredLockList = acquiredLocks.get(); LockGraphNode node = lock.getLockGraphNode(); // Iterate in reverse because locks are usually locked/unlocked in a // LIFO order. for (int i = acquiredLockList.size() - 1; i >=0; i--) { if (acquiredLockList.get(i) == node) { acquiredLockList.remove(i); break; } } } } final class CycleDetectingReentrantLock extends ReentrantLock implements CycleDetectingLock { private final LockGraphNode lockGraphNode; private CycleDetectingReentrantLock( LockGraphNode lockGraphNode, boolean fair) { super(fair); this.lockGraphNode = Preconditions.checkNotNull(lockGraphNode); } ///// CycleDetectingLock methods. ///// @Override public LockGraphNode getLockGraphNode() { return lockGraphNode; } @Override public boolean isAcquiredByCurrentThread() { return isHeldByCurrentThread(); } ///// Overridden ReentrantLock methods. ///// @Override public void lock() { aboutToAcquire(this); try { super.lock(); } finally { lockStateChanged(this); } } @Override public void lockInterruptibly() throws InterruptedException { aboutToAcquire(this); try { super.lockInterruptibly(); } finally { lockStateChanged(this); } } @Override public boolean tryLock() { aboutToAcquire(this); try { return super.tryLock(); } finally { lockStateChanged(this); } } @Override public boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException { aboutToAcquire(this); try { return super.tryLock(timeout, unit); } finally { lockStateChanged(this); } } @Override public void unlock() { try { super.unlock(); } finally { lockStateChanged(this); } } } final class CycleDetectingReentrantReadWriteLock extends ReentrantReadWriteLock implements CycleDetectingLock { // These ReadLock/WriteLock implementations shadow those in the // ReentrantReadWriteLock superclass. They are simply wrappers around the // internal Sync object, so this is safe since the shadowed locks are never // exposed or used. private final CycleDetectingReentrantReadLock readLock; private final CycleDetectingReentrantWriteLock writeLock; private final LockGraphNode lockGraphNode; private CycleDetectingReentrantReadWriteLock( LockGraphNode lockGraphNode, boolean fair) { super(fair); this.readLock = new CycleDetectingReentrantReadLock(this); this.writeLock = new CycleDetectingReentrantWriteLock(this); this.lockGraphNode = Preconditions.checkNotNull(lockGraphNode); } ///// Overridden ReentrantReadWriteLock methods. ///// @Override public ReadLock readLock() { return readLock; } @Override public WriteLock writeLock() { return writeLock; } ///// CycleDetectingLock methods. ///// @Override public LockGraphNode getLockGraphNode() { return lockGraphNode; } @Override public boolean isAcquiredByCurrentThread() { return isWriteLockedByCurrentThread() || getReadHoldCount() > 0; } } private class CycleDetectingReentrantReadLock extends ReentrantReadWriteLock.ReadLock { final CycleDetectingReentrantReadWriteLock readWriteLock; CycleDetectingReentrantReadLock( CycleDetectingReentrantReadWriteLock readWriteLock) { super(readWriteLock); this.readWriteLock = readWriteLock; } @Override public void lock() { aboutToAcquire(readWriteLock); try { super.lock(); } finally { lockStateChanged(readWriteLock); } } @Override public void lockInterruptibly() throws InterruptedException { aboutToAcquire(readWriteLock); try { super.lockInterruptibly(); } finally { lockStateChanged(readWriteLock); } } @Override public boolean tryLock() { aboutToAcquire(readWriteLock); try { return super.tryLock(); } finally { lockStateChanged(readWriteLock); } } @Override public boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException { aboutToAcquire(readWriteLock); try { return super.tryLock(timeout, unit); } finally { lockStateChanged(readWriteLock); } } @Override public void unlock() { try { super.unlock(); } finally { lockStateChanged(readWriteLock); } } } private class CycleDetectingReentrantWriteLock extends ReentrantReadWriteLock.WriteLock { final CycleDetectingReentrantReadWriteLock readWriteLock; CycleDetectingReentrantWriteLock( CycleDetectingReentrantReadWriteLock readWriteLock) { super(readWriteLock); this.readWriteLock = readWriteLock; } @Override public void lock() { aboutToAcquire(readWriteLock); try { super.lock(); } finally { lockStateChanged(readWriteLock); } } @Override public void lockInterruptibly() throws InterruptedException { aboutToAcquire(readWriteLock); try { super.lockInterruptibly(); } finally { lockStateChanged(readWriteLock); } } @Override public boolean tryLock() { aboutToAcquire(readWriteLock); try { return super.tryLock(); } finally { lockStateChanged(readWriteLock); } } @Override public boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException { aboutToAcquire(readWriteLock); try { return super.tryLock(timeout, unit); } finally { lockStateChanged(readWriteLock); } } @Override public void unlock() { try { super.unlock(); } finally { lockStateChanged(readWriteLock); } } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy