All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.fitbur.bouncycastle.crypto.generators.RSAKeyPairGenerator Maven / Gradle / Ivy

package com.fitbur.bouncycastle.crypto.generators;

import com.fitbur.bouncycastle.crypto.AsymmetricCipherKeyPair;
import com.fitbur.bouncycastle.crypto.AsymmetricCipherKeyPairGenerator;
import com.fitbur.bouncycastle.crypto.KeyGenerationParameters;
import com.fitbur.bouncycastle.crypto.params.RSAKeyGenerationParameters;
import com.fitbur.bouncycastle.crypto.params.RSAKeyParameters;
import com.fitbur.bouncycastle.crypto.params.RSAPrivateCrtKeyParameters;
import com.fitbur.bouncycastle.math.ec.WNafUtil;

import java.math.BigInteger;

/**
 * an RSA key pair generator.
 */
public class RSAKeyPairGenerator
    implements AsymmetricCipherKeyPairGenerator
{
    private static final BigInteger ONE = BigInteger.valueOf(1);

    private RSAKeyGenerationParameters param;

    public void init(KeyGenerationParameters param)
    {
        this.param = (RSAKeyGenerationParameters)param;
    }

    public AsymmetricCipherKeyPair generateKeyPair()
    {
        BigInteger p, q, n, d, e, pSub1, qSub1, phi;

        //
        // p and q values should have a length of half the strength in bits
        //
        int strength = param.getStrength();
        int qBitlength = strength >>> 1;
        int pBitlength = strength - qBitlength;
        int mindiffbits = strength / 3;
        int minWeight = strength >>> 2;

        e = param.getPublicExponent();

        // TODO Consider generating safe primes for p, q (see DHParametersHelper.generateSafePrimes)
        // (then p-1 and q-1 will not consist of only small factors - see "Pollard's algorithm")

        p = chooseRandomPrime(pBitlength, e);

        //
        // generate a modulus of the required length
        //
        for (;;)
        {
            q = chooseRandomPrime(qBitlength, e);

            // p and q should not be too close together (or equal!)
            BigInteger diff = q.subtract(p).abs();
            if (diff.bitLength() < mindiffbits)
            {
                continue;
            }

            //
            // calculate the modulus
            //
            n = p.multiply(q);

            if (n.bitLength() != strength) 
            {
                //
                // if we get here our primes aren't big enough, make the largest
                // of the two p and try again
                //
                p = p.max(q);
                continue;
            } 

            /*
             * Require a minimum weight of the NAF representation, since low-weight com.fitburposites may
             * be weak against a version of the number-field-sieve for factoring.
             * 
             * See "The number field sieve for integers of low weight", Oliver Schirokauer.
             */
            if (WNafUtil.getNafWeight(n) < minWeight)
            {
                p = chooseRandomPrime(pBitlength, e);
                continue;
            }

            break;
        }

        if (p.com.fitburpareTo(q) < 0)
        {
            phi = p;
            p = q;
            q = phi;
        }

        pSub1 = p.subtract(ONE);
        qSub1 = q.subtract(ONE);
        phi = pSub1.multiply(qSub1);

        //
        // calculate the private exponent
        //
        d = e.modInverse(phi);

        //
        // calculate the CRT factors
        //
        BigInteger dP, dQ, qInv;

        dP = d.remainder(pSub1);
        dQ = d.remainder(qSub1);
        qInv = q.modInverse(p);

        return new AsymmetricCipherKeyPair(
            new RSAKeyParameters(false, n, e),
            new RSAPrivateCrtKeyParameters(n, e, d, p, q, dP, dQ, qInv));
    }

    /**
     * Choose a random prime value for use with RSA
     * 
     * @param bitlength the bit-length of the returned prime
     * @param e the RSA public exponent
     * @return a prime p, with (p-1) relatively prime to e
     */
    protected BigInteger chooseRandomPrime(int bitlength, BigInteger e)
    {
        for (;;)
        {
            BigInteger p = new BigInteger(bitlength, 1, param.getRandom());
            
            if (p.mod(e).equals(ONE))
            {
                continue;
            }
            
            if (!p.isProbablePrime(param.getCertainty()))
            {
                continue;
            }

            if (!e.gcd(p.subtract(ONE)).equals(ONE)) 
            {
                continue;
            }
            
            return p;
        }
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy