com.fitbur.bouncycastle.crypto.modes.EAXBlockCipher Maven / Gradle / Ivy
package com.fitbur.bouncycastle.crypto.modes;
import com.fitbur.bouncycastle.crypto.BlockCipher;
import com.fitbur.bouncycastle.crypto.CipherParameters;
import com.fitbur.bouncycastle.crypto.DataLengthException;
import com.fitbur.bouncycastle.crypto.InvalidCipherTextException;
import com.fitbur.bouncycastle.crypto.Mac;
import com.fitbur.bouncycastle.crypto.OutputLengthException;
import com.fitbur.bouncycastle.crypto.macs.CMac;
import com.fitbur.bouncycastle.crypto.params.AEADParameters;
import com.fitbur.bouncycastle.crypto.params.ParametersWithIV;
import com.fitbur.bouncycastle.util.Arrays;
/**
* A Two-Pass Authenticated-Encryption Scheme Optimized for Simplicity and
* Efficiency - by M. Bellare, P. Rogaway, D. Wagner.
*
* http://www.cs.ucdavis.edu/~rogaway/papers/eax.pdf
*
* EAX is an AEAD scheme based on CTR and OMAC1/CMAC, that uses a single block
* cipher to encrypt and authenticate data. It's on-line (the length of a
* message isn't needed to begin processing it), has good performances, it's
* simple and provably secure (provided the underlying block cipher is secure).
*
* Of course, this implementations is NOT thread-safe.
*/
public class EAXBlockCipher
implements AEADBlockCipher
{
private static final byte nTAG = 0x0;
private static final byte hTAG = 0x1;
private static final byte cTAG = 0x2;
private SICBlockCipher cipher;
private boolean forEncryption;
private int blockSize;
private Mac mac;
private byte[] nonceMac;
private byte[] associatedTextMac;
private byte[] macBlock;
private int macSize;
private byte[] bufBlock;
private int bufOff;
private boolean cipherInitialized;
private byte[] initialAssociatedText;
/**
* Constructor that accepts an instance of a block cipher engine.
*
* @param cipher the engine to use
*/
public EAXBlockCipher(BlockCipher cipher)
{
blockSize = cipher.getBlockSize();
mac = new CMac(cipher);
macBlock = new byte[blockSize];
associatedTextMac = new byte[mac.getMacSize()];
nonceMac = new byte[mac.getMacSize()];
this.cipher = new SICBlockCipher(cipher);
}
public String getAlgorithmName()
{
return cipher.getUnderlyingCipher().getAlgorithmName() + "/EAX";
}
public BlockCipher getUnderlyingCipher()
{
return cipher.getUnderlyingCipher();
}
public int getBlockSize()
{
return cipher.getBlockSize();
}
public void init(boolean forEncryption, CipherParameters params)
throws IllegalArgumentException
{
this.forEncryption = forEncryption;
byte[] nonce;
CipherParameters keyParam;
if (params instanceof AEADParameters)
{
AEADParameters param = (AEADParameters)params;
nonce = param.getNonce();
initialAssociatedText = param.getAssociatedText();
macSize = param.getMacSize() / 8;
keyParam = param.getKey();
}
else if (params instanceof ParametersWithIV)
{
ParametersWithIV param = (ParametersWithIV)params;
nonce = param.getIV();
initialAssociatedText = null;
macSize = mac.getMacSize() / 2;
keyParam = param.getParameters();
}
else
{
throw new IllegalArgumentException("invalid parameters passed to EAX");
}
bufBlock = new byte[forEncryption ? blockSize : (blockSize + macSize)];
byte[] tag = new byte[blockSize];
// Key reuse implemented in CBC mode of underlying CMac
mac.init(keyParam);
tag[blockSize - 1] = nTAG;
mac.update(tag, 0, blockSize);
mac.update(nonce, 0, nonce.length);
mac.doFinal(nonceMac, 0);
// Same BlockCipher underlies this and the mac, so reuse last key on cipher
cipher.init(true, new ParametersWithIV(null, nonceMac));
reset();
}
private void initCipher()
{
if (cipherInitialized)
{
return;
}
cipherInitialized = true;
mac.doFinal(associatedTextMac, 0);
byte[] tag = new byte[blockSize];
tag[blockSize - 1] = cTAG;
mac.update(tag, 0, blockSize);
}
private void calculateMac()
{
byte[] outC = new byte[blockSize];
mac.doFinal(outC, 0);
for (int i = 0; i < macBlock.length; i++)
{
macBlock[i] = (byte)(nonceMac[i] ^ associatedTextMac[i] ^ outC[i]);
}
}
public void reset()
{
reset(true);
}
private void reset(
boolean clearMac)
{
cipher.reset(); // TODO Redundant since the mac will reset it?
mac.reset();
bufOff = 0;
Arrays.fill(bufBlock, (byte)0);
if (clearMac)
{
Arrays.fill(macBlock, (byte)0);
}
byte[] tag = new byte[blockSize];
tag[blockSize - 1] = hTAG;
mac.update(tag, 0, blockSize);
cipherInitialized = false;
if (initialAssociatedText != null)
{
processAADBytes(initialAssociatedText, 0, initialAssociatedText.length);
}
}
public void processAADByte(byte in)
{
if (cipherInitialized)
{
throw new IllegalStateException("AAD data cannot be added after encryption/com.fitburcription processing has begun.");
}
mac.update(in);
}
public void processAADBytes(byte[] in, int inOff, int len)
{
if (cipherInitialized)
{
throw new IllegalStateException("AAD data cannot be added after encryption/com.fitburcryption processing has begun.");
}
mac.update(in, inOff, len);
}
public int processByte(byte in, byte[] out, int outOff)
throws DataLengthException
{
initCipher();
return process(in, out, outOff);
}
public int processBytes(byte[] in, int inOff, int len, byte[] out, int outOff)
throws DataLengthException
{
initCipher();
if (in.length < (inOff + len))
{
throw new DataLengthException("Input buffer too short");
}
int resultLen = 0;
for (int i = 0; i != len; i++)
{
resultLen += process(in[inOff + i], out, outOff + resultLen);
}
return resultLen;
}
public int doFinal(byte[] out, int outOff)
throws IllegalStateException, InvalidCipherTextException
{
initCipher();
int extra = bufOff;
byte[] tmp = new byte[bufBlock.length];
bufOff = 0;
if (forEncryption)
{
if (out.length < (outOff + extra + macSize))
{
throw new OutputLengthException("Output buffer too short");
}
cipher.processBlock(bufBlock, 0, tmp, 0);
System.arraycopy(tmp, 0, out, outOff, extra);
mac.update(tmp, 0, extra);
calculateMac();
System.arraycopy(macBlock, 0, out, outOff + extra, macSize);
reset(false);
return extra + macSize;
}
else
{
if (out.length < (outOff + extra - macSize))
{
throw new OutputLengthException("Output buffer too short");
}
if (extra < macSize)
{
throw new InvalidCipherTextException("data too short");
}
if (extra > macSize)
{
mac.update(bufBlock, 0, extra - macSize);
cipher.processBlock(bufBlock, 0, tmp, 0);
System.arraycopy(tmp, 0, out, outOff, extra - macSize);
}
calculateMac();
if (!verifyMac(bufBlock, extra - macSize))
{
throw new InvalidCipherTextException("mac check in EAX failed");
}
reset(false);
return extra - macSize;
}
}
public byte[] getMac()
{
byte[] mac = new byte[macSize];
System.arraycopy(macBlock, 0, mac, 0, macSize);
return mac;
}
public int getUpdateOutputSize(int len)
{
int totalData = len + bufOff;
if (!forEncryption)
{
if (totalData < macSize)
{
return 0;
}
totalData -= macSize;
}
return totalData - totalData % blockSize;
}
public int getOutputSize(int len)
{
int totalData = len + bufOff;
if (forEncryption)
{
return totalData + macSize;
}
return totalData < macSize ? 0 : totalData - macSize;
}
private int process(byte b, byte[] out, int outOff)
{
bufBlock[bufOff++] = b;
if (bufOff == bufBlock.length)
{
if (out.length < (outOff + blockSize))
{
throw new OutputLengthException("Output buffer is too short");
}
// TODO Could move the processByte(s) calls to here
// initCipher();
int size;
if (forEncryption)
{
size = cipher.processBlock(bufBlock, 0, out, outOff);
mac.update(out, outOff, blockSize);
}
else
{
mac.update(bufBlock, 0, blockSize);
size = cipher.processBlock(bufBlock, 0, out, outOff);
}
bufOff = 0;
if (!forEncryption)
{
System.arraycopy(bufBlock, blockSize, bufBlock, 0, macSize);
bufOff = macSize;
}
return size;
}
return 0;
}
private boolean verifyMac(byte[] mac, int off)
{
int nonEqual = 0;
for (int i = 0; i < macSize; i++)
{
nonEqual |= (macBlock[i] ^ mac[off + i]);
}
return nonEqual == 0;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy