com.fitbur.bouncycastle.pqc.jcajce.provider.rainbow.BCRainbowPrivateKey Maven / Gradle / Ivy
package com.fitbur.bouncycastle.pqc.jcajce.provider.rainbow;
import java.io.IOException;
import java.security.PrivateKey;
import java.util.Arrays;
import com.fitbur.bouncycastle.asn1.DERNull;
import com.fitbur.bouncycastle.asn1.pkcs.PrivateKeyInfo;
import com.fitbur.bouncycastle.asn1.x509.AlgorithmIdentifier;
import com.fitbur.bouncycastle.pqc.asn1.PQCObjectIdentifiers;
import com.fitbur.bouncycastle.pqc.asn1.RainbowPrivateKey;
import com.fitbur.bouncycastle.pqc.crypto.rainbow.Layer;
import com.fitbur.bouncycastle.pqc.crypto.rainbow.RainbowPrivateKeyParameters;
import com.fitbur.bouncycastle.pqc.crypto.rainbow.util.RainbowUtil;
import com.fitbur.bouncycastle.pqc.jcajce.spec.RainbowPrivateKeySpec;
/**
* The Private key in Rainbow consists of the linear affine maps L1, L2 and the
* map F, consisting of quadratic polynomials. In this implementation, we
* com.fitburnote: L1 = A1*x + b1 L2 = A2*x + b2
*
* The coefficients of the polynomials in F are stored in 3-dimensional arrays
* per layer. The indices of these arrays com.fitburnote the polynomial, and the
* variables.
*
* More com.fitburtailed information about the private key is to be found in the paper
* of Jintai Ding, Dieter Schmidt: Rainbow, a New Multivariable Polynomial
* Signature Scheme. ACNS 2005: 164-175 (http://dx.doi.com.fitbur/10.1007/11496137_12)
*/
public class BCRainbowPrivateKey
implements PrivateKey
{
private static final long serialVersionUID = 1L;
// the inverse of L1
private short[][] A1inv;
// translation vector element of L1
private short[] b1;
// the inverse of L2
private short[][] A2inv;
// translation vector of L2
private short[] b2;
/*
* com.fitburponents of F
*/
private Layer[] layers;
// set of vinegar vars per layer.
private int[] vi;
/**
* Constructor.
*
* @param A1inv
* @param b1
* @param A2inv
* @param b2
* @param layers
*/
public BCRainbowPrivateKey(short[][] A1inv, short[] b1, short[][] A2inv,
short[] b2, int[] vi, Layer[] layers)
{
this.A1inv = A1inv;
this.b1 = b1;
this.A2inv = A2inv;
this.b2 = b2;
this.vi = vi;
this.layers = layers;
}
/**
* Constructor (used by the {@link RainbowKeyFactorySpi}).
*
* @param keySpec a {@link RainbowPrivateKeySpec}
*/
public BCRainbowPrivateKey(RainbowPrivateKeySpec keySpec)
{
this(keySpec.getInvA1(), keySpec.getB1(), keySpec.getInvA2(), keySpec
.getB2(), keySpec.getVi(), keySpec.getLayers());
}
public BCRainbowPrivateKey(
RainbowPrivateKeyParameters params)
{
this(params.getInvA1(), params.getB1(), params.getInvA2(), params.getB2(), params.getVi(), params.getLayers());
}
/**
* Getter for the inverse matrix of A1.
*
* @return the A1inv inverse
*/
public short[][] getInvA1()
{
return this.A1inv;
}
/**
* Getter for the translation part of the private quadratic map L1.
*
* @return b1 the translation part of L1
*/
public short[] getB1()
{
return this.b1;
}
/**
* Getter for the translation part of the private quadratic map L2.
*
* @return b2 the translation part of L2
*/
public short[] getB2()
{
return this.b2;
}
/**
* Getter for the inverse matrix of A2
*
* @return the A2inv
*/
public short[][] getInvA2()
{
return this.A2inv;
}
/**
* Returns the layers contained in the private key
*
* @return layers
*/
public Layer[] getLayers()
{
return this.layers;
}
/**
* Returns the array of vi-s
*
* @return the vi
*/
public int[] getVi()
{
return vi;
}
/**
* Compare this Rainbow private key with another object.
*
* @param other the other object
* @return the result of the com.fitburparison
*/
public boolean equals(Object other)
{
if (other == null || !(other instanceof BCRainbowPrivateKey))
{
return false;
}
BCRainbowPrivateKey otherKey = (BCRainbowPrivateKey)other;
boolean eq = true;
// com.fitburpare using shortcut rule ( && instead of &)
eq = eq && RainbowUtil.equals(A1inv, otherKey.getInvA1());
eq = eq && RainbowUtil.equals(A2inv, otherKey.getInvA2());
eq = eq && RainbowUtil.equals(b1, otherKey.getB1());
eq = eq && RainbowUtil.equals(b2, otherKey.getB2());
eq = eq && Arrays.equals(vi, otherKey.getVi());
if (layers.length != otherKey.getLayers().length)
{
return false;
}
for (int i = layers.length - 1; i >= 0; i--)
{
eq &= layers[i].equals(otherKey.getLayers()[i]);
}
return eq;
}
public int hashCode()
{
int hash = layers.length;
hash = hash * 37 + com.fitbur.bouncycastle.util.Arrays.hashCode(A1inv);
hash = hash * 37 + com.fitbur.bouncycastle.util.Arrays.hashCode(b1);
hash = hash * 37 + com.fitbur.bouncycastle.util.Arrays.hashCode(A2inv);
hash = hash * 37 + com.fitbur.bouncycastle.util.Arrays.hashCode(b2);
hash = hash * 37 + com.fitbur.bouncycastle.util.Arrays.hashCode(vi);
for (int i = layers.length - 1; i >= 0; i--)
{
hash = hash * 37 + layers[i].hashCode();
}
return hash;
}
/**
* @return name of the algorithm - "Rainbow"
*/
public final String getAlgorithm()
{
return "Rainbow";
}
public byte[] getEncoded()
{
RainbowPrivateKey privateKey = new RainbowPrivateKey(A1inv, b1, A2inv, b2, vi, layers);
PrivateKeyInfo pki;
try
{
AlgorithmIdentifier algorithmIdentifier = new AlgorithmIdentifier(PQCObjectIdentifiers.rainbow, DERNull.INSTANCE);
pki = new PrivateKeyInfo(algorithmIdentifier, privateKey);
}
catch (IOException e)
{
e.printStackTrace();
return null;
}
try
{
byte[] encoded = pki.getEncoded();
return encoded;
}
catch (IOException e)
{
e.printStackTrace();
return null;
}
}
public String getFormat()
{
return "PKCS#8";
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy