com.flowpowered.math.imaginary.Quaternionf Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of flow-math Show documentation
Show all versions of flow-math Show documentation
Immutable math library for Java with a focus on games and computer graphics.
The newest version!
package com.flowpowered.math.imaginary;
import java.io.Serializable;
import com.flowpowered.math.GenericMath;
import com.flowpowered.math.HashFunctions;
import com.flowpowered.math.TrigMath;
import com.flowpowered.math.matrix.Matrix3f;
import com.flowpowered.math.vector.Vector3f;
/**
* Represent a quaternion of the form xi + yj + zk + w
. The x, y, z and w components are stored as floats. This class is immutable.
*/
public class Quaternionf implements Imaginaryf, Comparable, Serializable, Cloneable {
private static final long serialVersionUID = 1;
/**
* An immutable identity (0, 0, 0, 0) quaternion.
*/
public static final Quaternionf ZERO = new Quaternionf(0, 0, 0, 0);
/**
* An immutable identity (0, 0, 0, 1) quaternion.
*/
public static final Quaternionf IDENTITY = new Quaternionf(0, 0, 0, 1);
private final float x;
private final float y;
private final float z;
private final float w;
private transient volatile boolean hashed = false;
private transient volatile int hashCode = 0;
/**
* Constructs a new quaternion. The components are set to the identity (0, 0, 0, 1).
*/
public Quaternionf() {
this(0, 0, 0, 1);
}
/**
* Constructs a new quaternion from the double components.
*
* @param x The x (imaginary) component
* @param y The y (imaginary) component
* @param z The z (imaginary) component
* @param w The w (real) component
*/
public Quaternionf(double x, double y, double z, double w) {
this((float) x, (float) y, (float) z, (float) w);
}
/**
* Constructs a new quaternion from the float components.
*
* @param x The x (imaginary) component
* @param y The y (imaginary) component
* @param z The z (imaginary) component
* @param w The w (real) component
*/
public Quaternionf(float x, float y, float z, float w) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
/**
* Copy constructor.
*
* @param q The quaternion to copy
*/
public Quaternionf(Quaternionf q) {
this(q.x, q.y, q.z, q.w);
}
/**
* Gets the x (imaginary) component of this quaternion.
*
* @return The x (imaginary) component
*/
public float getX() {
return x;
}
/**
* Gets the y (imaginary) component of this quaternion.
*
* @return The y (imaginary) component
*/
public float getY() {
return y;
}
/**
* Gets the z (imaginary) component of this quaternion.
*
* @return The z (imaginary) component
*/
public float getZ() {
return z;
}
/**
* Gets the w (real) component of this quaternion.
*
* @return The w (real) component
*/
public float getW() {
return w;
}
/**
* Adds another quaternion to this one.
*
* @param q The quaternion to add
* @return A new quaternion, which is the sum of both
*/
public Quaternionf add(Quaternionf q) {
return add(q.x, q.y, q.z, q.w);
}
/**
* Adds the double components of another quaternion to this one.
*
* @param x The x (imaginary) component of the quaternion to add
* @param y The y (imaginary) component of the quaternion to add
* @param z The z (imaginary) component of the quaternion to add
* @param w The w (real) component of the quaternion to add
* @return A new quaternion, which is the sum of both
*/
public Quaternionf add(double x, double y, double z, double w) {
return add((float) x, (float) y, (float) z, (float) w);
}
/**
* Adds the float components of another quaternion to this one.
*
* @param x The x (imaginary) component of the quaternion to add
* @param y The y (imaginary) component of the quaternion to add
* @param z The z (imaginary) component of the quaternion to add
* @param w The w (real) component of the quaternion to add
* @return A new quaternion, which is the sum of both
*/
public Quaternionf add(float x, float y, float z, float w) {
return new Quaternionf(this.x + x, this.y + y, this.z + z, this.w + w);
}
/**
* Subtracts another quaternion from this one.
*
* @param q The quaternion to subtract
* @return A new quaternion, which is the difference of both
*/
public Quaternionf sub(Quaternionf q) {
return sub(q.x, q.y, q.z, q.w);
}
/**
* Subtracts the double components of another quaternion from this one.
*
* @param x The x (imaginary) component of the quaternion to subtract
* @param y The y (imaginary) component of the quaternion to subtract
* @param z The z (imaginary) component of the quaternion to subtract
* @param w The w (real) component of the quaternion to subtract
* @return A new quaternion, which is the difference of both
*/
public Quaternionf sub(double x, double y, double z, double w) {
return sub((float) x, (float) y, (float) z, (float) w);
}
/**
* Subtracts the float components of another quaternion from this one.
*
* @param x The x (imaginary) component of the quaternion to subtract
* @param y The y (imaginary) component of the quaternion to subtract
* @param z The z (imaginary) component of the quaternion to subtract
* @param w The w (real) component of the quaternion to subtract
* @return A new quaternion, which is the difference of both
*/
public Quaternionf sub(float x, float y, float z, float w) {
return new Quaternionf(this.x - x, this.y - y, this.z - z, this.w - w);
}
/**
* Multiplies the components of this quaternion by a double scalar.
*
* @param a The multiplication scalar
* @return A new quaternion, which has each component multiplied by the scalar
*/
public Quaternionf mul(double a) {
return mul((float) a);
}
/**
* Multiplies the components of this quaternion by a float scalar.
*
* @param a The multiplication scalar
* @return A new quaternion, which has each component multiplied by the scalar
*/
@Override
public Quaternionf mul(float a) {
return new Quaternionf(x * a, y * a, z * a, w * a);
}
/**
* Multiplies another quaternion with this one.
*
* @param q The quaternion to multiply with
* @return A new quaternion, which is the product of both
*/
public Quaternionf mul(Quaternionf q) {
return mul(q.x, q.y, q.z, q.w);
}
/**
* Multiplies the double components of another quaternion with this one.
*
* @param x The x (imaginary) component of the quaternion to multiply with
* @param y The y (imaginary) component of the quaternion to multiply with
* @param z The z (imaginary) component of the quaternion to multiply with
* @param w The w (real) component of the quaternion to multiply with
* @return A new quaternion, which is the product of both
*/
public Quaternionf mul(double x, double y, double z, double w) {
return mul((float) x, (float) y, (float) z, (float) w);
}
/**
* Multiplies the float components of another quaternion with this one.
*
* @param x The x (imaginary) component of the quaternion to multiply with
* @param y The y (imaginary) component of the quaternion to multiply with
* @param z The z (imaginary) component of the quaternion to multiply with
* @param w The w (real) component of the quaternion to multiply with
* @return A new quaternion, which is the product of both
*/
public Quaternionf mul(float x, float y, float z, float w) {
return new Quaternionf(
this.w * x + this.x * w + this.y * z - this.z * y,
this.w * y + this.y * w + this.z * x - this.x * z,
this.w * z + this.z * w + this.x * y - this.y * x,
this.w * w - this.x * x - this.y * y - this.z * z);
}
/**
* Divides the components of this quaternion by a double scalar.
*
* @param a The division scalar
* @return A new quaternion, which has each component divided by the scalar
*/
public Quaternionf div(double a) {
return div((float) a);
}
/**
* Divides the components of this quaternion by a float scalar.
*
* @param a The division scalar
* @return A new quaternion, which has each component divided by the scalar
*/
@Override
public Quaternionf div(float a) {
return new Quaternionf(x / a, y / a, z / a, w / a);
}
/**
* Divides this quaternions by another one.
*
* @param q The quaternion to divide with
* @return The quotient of the two quaternions
*/
public Quaternionf div(Quaternionf q) {
return div(q.x, q.y, q.z, q.w);
}
/**
* Divides this quaternions by the double components of another one.
*
* @param x The x (imaginary) component of the quaternion to divide with
* @param y The y (imaginary) component of the quaternion to divide with
* @param z The z (imaginary) component of the quaternion to divide with
* @param w The w (real) component of the quaternion to divide with
* @return The quotient of the two quaternions
*/
public Quaternionf div(double x, double y, double z, double w) {
return div((float) x, (float) y, (float) z, (float) w);
}
/**
* Divides this quaternions by the float components of another one.
*
* @param x The x (imaginary) component of the quaternion to divide with
* @param y The y (imaginary) component of the quaternion to divide with
* @param z The z (imaginary) component of the quaternion to divide with
* @param w The w (real) component of the quaternion to divide with
* @return The quotient of the two quaternions
*/
public Quaternionf div(float x, float y, float z, float w) {
final float d = x * x + y * y + z * z + w * w;
return new Quaternionf(
(this.x * w - this.w * x - this.z * y + this.y * z) / d,
(this.y * w + this.z * x - this.w * y - this.x * z) / d,
(this.z * w - this.y * x + this.x * y - this.w * z) / d,
(this.w * w + this.x * x + this.y * y + this.z * z) / d);
}
/**
* Returns the dot product of this quaternion with another one.
*
* @param q The quaternion to calculate the dot product with
* @return The dot product of the two quaternions
*/
public float dot(Quaternionf q) {
return dot(q.x, q.y, q.z, q.w);
}
/**
* Returns the dot product of this quaternion with the double components of another one.
*
* @param x The x (imaginary) component of the quaternion to calculate the dot product with
* @param y The y (imaginary) component of the quaternion to calculate the dot product with
* @param z The z (imaginary) component of the quaternion to calculate the dot product with
* @param w The w (real) component of the quaternion to calculate the dot product with
* @return The dot product of the two quaternions
*/
public float dot(double x, double y, double z, double w) {
return dot((float) x, (float) y, (float) z, (float) w);
}
/**
* Returns the dot product of this quaternion with the float components of another one.
*
* @param x The x (imaginary) component of the quaternion to calculate the dot product with
* @param y The y (imaginary) component of the quaternion to calculate the dot product with
* @param z The z (imaginary) component of the quaternion to calculate the dot product with
* @param w The w (real) component of the quaternion to calculate the dot product with
* @return The dot product of the two quaternions
*/
public float dot(float x, float y, float z, float w) {
return this.x * x + this.y * y + this.z * z + this.w * w;
}
/**
* Rotates a vector by this quaternion.
*
* @param v The vector to rotate
* @return The rotated vector
*/
public Vector3f rotate(Vector3f v) {
return rotate(v.getX(), v.getY(), v.getZ());
}
/**
* Rotates the double components of a vector by this quaternion.
*
* @param x The x component of the vector
* @param y The y component of the vector
* @param z The z component of the vector
* @return The rotated vector
*/
public Vector3f rotate(double x, double y, double z) {
return rotate((float) x, (float) y, (float) z);
}
/**
* Rotates the float components of a vector by this quaternion.
*
* @param x The x component of the vector
* @param y The y component of the vector
* @param z The z component of the vector
* @return The rotated vector
*/
public Vector3f rotate(float x, float y, float z) {
final float length = length();
if (Math.abs(length) < GenericMath.FLT_EPSILON) {
throw new ArithmeticException("Cannot rotate by the zero quaternion");
}
final float nx = this.x / length;
final float ny = this.y / length;
final float nz = this.z / length;
final float nw = this.w / length;
final float px = nw * x + ny * z - nz * y;
final float py = nw * y + nz * x - nx * z;
final float pz = nw * z + nx * y - ny * x;
final float pw = -nx * x - ny * y - nz * z;
return new Vector3f(
pw * -nx + px * nw - py * nz + pz * ny,
pw * -ny + py * nw - pz * nx + px * nz,
pw * -nz + pz * nw - px * ny + py * nx);
}
/**
* Returns a unit vector representing the direction of this quaternion, which is {@link Vector3f#FORWARD} rotated by this quaternion.
*
* @return The vector representing the direction this quaternion is pointing to
*/
public Vector3f getDirection() {
return rotate(Vector3f.FORWARD);
}
/**
* Returns the axis of rotation for this quaternion.
*
* @return The axis of rotation
*/
public Vector3f getAxis() {
final float q = (float) Math.sqrt(1 - w * w);
return new Vector3f(x / q, y / q, z / q);
}
/**
* Returns the angles in degrees around the x, y and z axes that correspond to the rotation represented by this quaternion.
*
* @return The angle in degrees for each axis, stored in a vector, in the corresponding component
*/
public Vector3f getAxesAnglesDeg() {
return getAxesAnglesRad().mul(TrigMath.RAD_TO_DEG);
}
/**
* Returns the angles in radians around the x, y and z axes that correspond to the rotation represented by this quaternion.
*
* @return The angle in radians for each axis, stored in a vector, in the corresponding component
*/
public Vector3f getAxesAnglesRad() {
final double roll;
final double pitch;
double yaw;
final double test = w * x - y * z;
if (Math.abs(test) < 0.4999) {
roll = TrigMath.atan2(2 * (w * z + x * y), 1 - 2 * (x * x + z * z));
pitch = TrigMath.asin(2 * test);
yaw = TrigMath.atan2(2 * (w * y + z * x), 1 - 2 * (x * x + y * y));
} else {
final int sign = (test < 0) ? -1 : 1;
roll = 0;
pitch = sign * Math.PI / 2;
yaw = -sign * 2 * TrigMath.atan2(z, w);
}
return new Vector3f(pitch, yaw, roll);
}
/**
* Conjugates the quaternion.
Conjugation of a quaternion a
is an operation returning quaternion a'
such that a' * a = a * a' = |a|2
where
* |a|2
is squared length of a
.
*
* @return the conjugated quaternion
*/
@Override
public Quaternionf conjugate() {
return new Quaternionf(-x, -y, -z, w);
}
/**
* Inverts the quaternion.
Inversion of a quaternion a
returns quaternion a-1 = a' / |a|2
where a'
is {@link #conjugate()
* conjugation} of a
, and |a|2
is squared length of a
.
For any quaternions a, b, c
, such that a * b = c
equations
* a-1 * c = b
and c * b-1 = a
are true.
*
* @return the inverted quaternion
*/
@Override
public Quaternionf invert() {
final float lengthSquared = lengthSquared();
if (Math.abs(lengthSquared) < GenericMath.FLT_EPSILON) {
throw new ArithmeticException("Cannot invert a quaternion of length zero");
}
return conjugate().div(lengthSquared);
}
/**
* Returns the square of the length of this quaternion.
*
* @return The square of the length
*/
@Override
public float lengthSquared() {
return x * x + y * y + z * z + w * w;
}
/**
* Returns the length of this quaternion.
*
* @return The length
*/
@Override
public float length() {
return (float) Math.sqrt(lengthSquared());
}
/**
* Normalizes this quaternion.
*
* @return A new quaternion of unit length
*/
@Override
public Quaternionf normalize() {
final float length = length();
if (Math.abs(length) < GenericMath.FLT_EPSILON) {
throw new ArithmeticException("Cannot normalize the zero quaternion");
}
return new Quaternionf(x / length, y / length, z / length, w / length);
}
/**
* Converts this quaternion to a complex by extracting the rotation around
* the axis and returning it as a rotation in the plane perpendicular to the
* rotation axis.
*
* @return The rotation without the axis as a complex
*/
public Complexf toComplex() {
final float w2 = w * w;
return new Complexf(2 * w2 - 1, 2 * w * (float) Math.sqrt(1 - w2));
}
@Override
public Quaternionf toFloat() {
return new Quaternionf(x, y, z, w);
}
@Override
public Quaterniond toDouble() {
return new Quaterniond(x, y, z, w);
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (!(o instanceof Quaternionf)) {
return false;
}
final Quaternionf quaternion = (Quaternionf) o;
if (Float.compare(quaternion.w, w) != 0) {
return false;
}
if (Float.compare(quaternion.x, x) != 0) {
return false;
}
if (Float.compare(quaternion.y, y) != 0) {
return false;
}
if (Float.compare(quaternion.z, z) != 0) {
return false;
}
return true;
}
@Override
public int hashCode() {
if (!hashed) {
int result = (x != +0.0f ? HashFunctions.hash(x) : 0);
result = 31 * result + (y != +0.0f ? HashFunctions.hash(y) : 0);
result = 31 * result + (z != +0.0f ? HashFunctions.hash(z) : 0);
hashCode = 31 * result + (w != +0.0f ? HashFunctions.hash(w) : 0);
hashed = true;
}
return hashCode;
}
@Override
public int compareTo(Quaternionf q) {
return (int) Math.signum(lengthSquared() - q.lengthSquared());
}
@Override
public Quaternionf clone() {
return new Quaternionf(this);
}
@Override
public String toString() {
return "(" + x + ", " + y + ", " + z + ", " + w + ")";
}
/**
* Creates a new quaternion from the float real component.
*
* The {@link #ZERO} constant is re-used when {@code w} is 0.
*
* @param w The w (real) component
* @return The quaternion created from the float real component
*/
public static Quaternionf fromReal(float w) {
return w == 0 ? ZERO : new Quaternionf(0, 0, 0, w);
}
/**
* Creates a new quaternion from the float imaginary components.
*
* The {@link #ZERO} constant is re-used when {@code x}, {@code y}, and {@code z} are 0.
*
* @param x The x (imaginary) component
* @param y The y (imaginary) component
* @param z The z (imaginary) component
* @return The quaternion created from the float imaginary components
*/
public static Quaternionf fromImaginary(float x, float y, float z) {
return x == 0 && y == 0 && z == 0 ? ZERO : new Quaternionf(x, y, z, 0);
}
/**
* Creates a new quaternion from the float components.
*
* The {@link #ZERO} constant is re-used when {@code x}, {@code y}, {@code z}, and {@code w} are 0.
*
* @param x The x (imaginary) component
* @param y The y (imaginary) component
* @param z The z (imaginary) component
* @param w The w (real) component
* @return The quaternion created from the float components
*/
public static Quaternionf from(float x, float y, float z, float w) {
return x == 0 && y == 0 && z == 0 && w == 0 ? ZERO : new Quaternionf(x, y, z, w);
}
/**
* Creates a new quaternion from the double angles in degrees around the x, y and z axes.
*
* @param pitch The rotation around x
* @param yaw The rotation around y
* @param roll The rotation around z
* @return The quaternion defined by the rotations around the axes
*/
public static Quaternionf fromAxesAnglesDeg(double pitch, double yaw, double roll) {
return fromAxesAnglesDeg((float) pitch, (float) yaw, (float) roll);
}
/**
* Creates a new quaternion from the double angles in radians around the x, y and z axes.
*
* @param pitch The rotation around x
* @param yaw The rotation around y
* @param roll The rotation around z
* @return The quaternion defined by the rotations around the axes
*/
public static Quaternionf fromAxesAnglesRad(double pitch, double yaw, double roll) {
return fromAxesAnglesRad((float) pitch, (float) yaw, (float) roll);
}
/**
* Creates a new quaternion from the float angles in degrees around the x, y and z axes.
*
* @param pitch The rotation around x
* @param yaw The rotation around y
* @param roll The rotation around z
* @return The quaternion defined by the rotations around the axes
*/
public static Quaternionf fromAxesAnglesDeg(float pitch, float yaw, float roll) {
return Quaternionf.fromAngleDegAxis(yaw, Vector3f.UNIT_Y).
mul(Quaternionf.fromAngleDegAxis(pitch, Vector3f.UNIT_X)).
mul(Quaternionf.fromAngleDegAxis(roll, Vector3f.UNIT_Z));
}
/**
* Creates a new quaternion from the float angles in radians around the x, y and z axes.
*
* @param pitch The rotation around x
* @param yaw The rotation around y
* @param roll The rotation around z
* @return The quaternion defined by the rotations around the axes
*/
public static Quaternionf fromAxesAnglesRad(float pitch, float yaw, float roll) {
return Quaternionf.fromAngleRadAxis(yaw, Vector3f.UNIT_Y).
mul(Quaternionf.fromAngleRadAxis(pitch, Vector3f.UNIT_X)).
mul(Quaternionf.fromAngleRadAxis(roll, Vector3f.UNIT_Z));
}
/**
* Creates a new quaternion from the angle-axis rotation defined from the first to the second vector.
*
* @param from The first vector
* @param to The second vector
* @return The quaternion defined by the angle-axis rotation between the vectors
*/
public static Quaternionf fromRotationTo(Vector3f from, Vector3f to) {
return Quaternionf.fromAngleRadAxis(TrigMath.acos(from.dot(to) / (from.length() * to.length())), from.cross(to));
}
/**
* Creates a new quaternion from the rotation double angle in degrees around the axis vector.
*
* @param angle The rotation angle in degrees
* @param axis The axis of rotation
* @return The quaternion defined by the rotation around the axis
*/
public static Quaternionf fromAngleDegAxis(double angle, Vector3f axis) {
return fromAngleRadAxis(Math.toRadians(angle), axis);
}
/**
* Creates a new quaternion from the rotation double angle in radians around the axis vector.
*
* @param angle The rotation angle in radians
* @param axis The axis of rotation
* @return The quaternion defined by the rotation around the axis
*/
public static Quaternionf fromAngleRadAxis(double angle, Vector3f axis) {
return fromAngleRadAxis((float) angle, axis);
}
/**
* Creates a new quaternion from the rotation float angle in degrees around the axis vector.
*
* @param angle The rotation angle in degrees
* @param axis The axis of rotation
* @return The quaternion defined by the rotation around the axis
*/
public static Quaternionf fromAngleDegAxis(float angle, Vector3f axis) {
return fromAngleRadAxis((float) Math.toRadians(angle), axis);
}
/**
* Creates a new quaternion from the rotation float angle in radians around the axis vector.
*
* @param angle The rotation angle in radians
* @param axis The axis of rotation
* @return The quaternion defined by the rotation around the axis
*/
public static Quaternionf fromAngleRadAxis(float angle, Vector3f axis) {
return fromAngleRadAxis(angle, axis.getX(), axis.getY(), axis.getZ());
}
/**
* Creates a new quaternion from the rotation double angle in degrees around the axis vector double components.
*
* @param angle The rotation angle in degrees
* @param x The x component of the axis vector
* @param y The y component of the axis vector
* @param z The z component of the axis vector
* @return The quaternion defined by the rotation around the axis
*/
public static Quaternionf fromAngleDegAxis(double angle, double x, double y, double z) {
return fromAngleRadAxis(Math.toRadians(angle), x, y, z);
}
/**
* Creates a new quaternion from the rotation double angle in radians around the axis vector double components.
*
* @param angle The rotation angle in radians
* @param x The x component of the axis vector
* @param y The y component of the axis vector
* @param z The z component of the axis vector
* @return The quaternion defined by the rotation around the axis
*/
public static Quaternionf fromAngleRadAxis(double angle, double x, double y, double z) {
return fromAngleRadAxis((float) angle, (float) x, (float) y, (float) z);
}
/**
* Creates a new quaternion from the rotation float angle in degrees around the axis vector float components.
*
* @param angle The rotation angle in degrees
* @param x The x component of the axis vector
* @param y The y component of the axis vector
* @param z The z component of the axis vector
* @return The quaternion defined by the rotation around the axis
*/
public static Quaternionf fromAngleDegAxis(float angle, float x, float y, float z) {
return fromAngleRadAxis((float) Math.toRadians(angle), x, y, z);
}
/**
* Creates a new quaternion from the rotation float angle in radians around the axis vector float components.
*
* @param angle The rotation angle in radians
* @param x The x component of the axis vector
* @param y The y component of the axis vector
* @param z The z component of the axis vector
* @return The quaternion defined by the rotation around the axis
*/
public static Quaternionf fromAngleRadAxis(float angle, float x, float y, float z) {
final float halfAngle = angle / 2;
final float q = TrigMath.sin(halfAngle) / (float) Math.sqrt(x * x + y * y + z * z);
return new Quaternionf(x * q, y * q, z * q, TrigMath.cos(halfAngle));
}
/**
* Creates a new quaternion from the rotation matrix. The matrix will be interpreted as a rotation matrix even if it is not.
*
* @param matrix The rotation matrix
* @return The quaternion defined by the rotation matrix
*/
public static Quaternionf fromRotationMatrix(Matrix3f matrix) {
final float trace = matrix.trace();
if (trace < 0) {
if (matrix.get(1, 1) > matrix.get(0, 0)) {
if (matrix.get(2, 2) > matrix.get(1, 1)) {
final float r = (float) Math.sqrt(matrix.get(2, 2) - matrix.get(0, 0) - matrix.get(1, 1) + 1);
final float s = 0.5f / r;
return new Quaternionf(
(matrix.get(2, 0) + matrix.get(0, 2)) * s,
(matrix.get(1, 2) + matrix.get(2, 1)) * s,
0.5f * r,
(matrix.get(1, 0) - matrix.get(0, 1)) * s);
} else {
final float r = (float) Math.sqrt(matrix.get(1, 1) - matrix.get(2, 2) - matrix.get(0, 0) + 1);
final float s = 0.5f / r;
return new Quaternionf(
(matrix.get(0, 1) + matrix.get(1, 0)) * s,
0.5f * r,
(matrix.get(1, 2) + matrix.get(2, 1)) * s,
(matrix.get(0, 2) - matrix.get(2, 0)) * s);
}
} else if (matrix.get(2, 2) > matrix.get(0, 0)) {
final float r = (float) Math.sqrt(matrix.get(2, 2) - matrix.get(0, 0) - matrix.get(1, 1) + 1);
final float s = 0.5f / r;
return new Quaternionf(
(matrix.get(2, 0) + matrix.get(0, 2)) * s,
(matrix.get(1, 2) + matrix.get(2, 1)) * s,
0.5f * r,
(matrix.get(1, 0) - matrix.get(0, 1)) * s);
} else {
final float r = (float) Math.sqrt(matrix.get(0, 0) - matrix.get(1, 1) - matrix.get(2, 2) + 1);
final float s = 0.5f / r;
return new Quaternionf(
0.5f * r,
(matrix.get(0, 1) + matrix.get(1, 0)) * s,
(matrix.get(2, 0) - matrix.get(0, 2)) * s,
(matrix.get(2, 1) - matrix.get(1, 2)) * s);
}
} else {
final float r = (float) Math.sqrt(trace + 1);
final float s = 0.5f / r;
return new Quaternionf(
(matrix.get(2, 1) - matrix.get(1, 2)) * s,
(matrix.get(0, 2) - matrix.get(2, 0)) * s,
(matrix.get(1, 0) - matrix.get(0, 1)) * s,
0.5f * r);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy