All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.flowpowered.math.imaginary.Quaternionf Maven / Gradle / Ivy

Go to download

Immutable math library for Java with a focus on games and computer graphics.

The newest version!
package com.flowpowered.math.imaginary;

import java.io.Serializable;

import com.flowpowered.math.GenericMath;
import com.flowpowered.math.HashFunctions;
import com.flowpowered.math.TrigMath;
import com.flowpowered.math.matrix.Matrix3f;
import com.flowpowered.math.vector.Vector3f;

/**
 * Represent a quaternion of the form xi + yj + zk + w. The x, y, z and w components are stored as floats. This class is immutable.
 */
public class Quaternionf implements Imaginaryf, Comparable, Serializable, Cloneable {
    private static final long serialVersionUID = 1;
    /**
     * An immutable identity (0, 0, 0, 0) quaternion.
     */
    public static final Quaternionf ZERO = new Quaternionf(0, 0, 0, 0);
    /**
     * An immutable identity (0, 0, 0, 1) quaternion.
     */
    public static final Quaternionf IDENTITY = new Quaternionf(0, 0, 0, 1);
    private final float x;
    private final float y;
    private final float z;
    private final float w;
    private transient volatile boolean hashed = false;
    private transient volatile int hashCode = 0;

    /**
     * Constructs a new quaternion. The components are set to the identity (0, 0, 0, 1).
     */
    public Quaternionf() {
        this(0, 0, 0, 1);
    }

    /**
     * Constructs a new quaternion from the double components.
     *
     * @param x The x (imaginary) component
     * @param y The y (imaginary) component
     * @param z The z (imaginary) component
     * @param w The w (real) component
     */
    public Quaternionf(double x, double y, double z, double w) {
        this((float) x, (float) y, (float) z, (float) w);
    }

    /**
     * Constructs a new quaternion from the float components.
     *
     * @param x The x (imaginary) component
     * @param y The y (imaginary) component
     * @param z The z (imaginary) component
     * @param w The w (real) component
     */
    public Quaternionf(float x, float y, float z, float w) {
        this.x = x;
        this.y = y;
        this.z = z;
        this.w = w;
    }

    /**
     * Copy constructor.
     *
     * @param q The quaternion to copy
     */
    public Quaternionf(Quaternionf q) {
        this(q.x, q.y, q.z, q.w);
    }

    /**
     * Gets the x (imaginary) component of this quaternion.
     *
     * @return The x (imaginary) component
     */
    public float getX() {
        return x;
    }

    /**
     * Gets the y (imaginary) component of this quaternion.
     *
     * @return The y (imaginary) component
     */
    public float getY() {
        return y;
    }

    /**
     * Gets the z (imaginary) component of this quaternion.
     *
     * @return The z (imaginary) component
     */
    public float getZ() {
        return z;
    }

    /**
     * Gets the w (real) component of this quaternion.
     *
     * @return The w (real) component
     */
    public float getW() {
        return w;
    }

    /**
     * Adds another quaternion to this one.
     *
     * @param q The quaternion to add
     * @return A new quaternion, which is the sum of both
     */
    public Quaternionf add(Quaternionf q) {
        return add(q.x, q.y, q.z, q.w);
    }

    /**
     * Adds the double components of another quaternion to this one.
     *
     * @param x The x (imaginary) component of the quaternion to add
     * @param y The y (imaginary) component of the quaternion to add
     * @param z The z (imaginary) component of the quaternion to add
     * @param w The w (real) component of the quaternion to add
     * @return A new quaternion, which is the sum of both
     */
    public Quaternionf add(double x, double y, double z, double w) {
        return add((float) x, (float) y, (float) z, (float) w);
    }

    /**
     * Adds the float components of another quaternion to this one.
     *
     * @param x The x (imaginary) component of the quaternion to add
     * @param y The y (imaginary) component of the quaternion to add
     * @param z The z (imaginary) component of the quaternion to add
     * @param w The w (real) component of the quaternion to add
     * @return A new quaternion, which is the sum of both
     */
    public Quaternionf add(float x, float y, float z, float w) {
        return new Quaternionf(this.x + x, this.y + y, this.z + z, this.w + w);
    }

    /**
     * Subtracts another quaternion from this one.
     *
     * @param q The quaternion to subtract
     * @return A new quaternion, which is the difference of both
     */
    public Quaternionf sub(Quaternionf q) {
        return sub(q.x, q.y, q.z, q.w);
    }

    /**
     * Subtracts the double components of another quaternion from this one.
     *
     * @param x The x (imaginary) component of the quaternion to subtract
     * @param y The y (imaginary) component of the quaternion to subtract
     * @param z The z (imaginary) component of the quaternion to subtract
     * @param w The w (real) component of the quaternion to subtract
     * @return A new quaternion, which is the difference of both
     */
    public Quaternionf sub(double x, double y, double z, double w) {
        return sub((float) x, (float) y, (float) z, (float) w);
    }

    /**
     * Subtracts the float components of another quaternion from this one.
     *
     * @param x The x (imaginary) component of the quaternion to subtract
     * @param y The y (imaginary) component of the quaternion to subtract
     * @param z The z (imaginary) component of the quaternion to subtract
     * @param w The w (real) component of the quaternion to subtract
     * @return A new quaternion, which is the difference of both
     */
    public Quaternionf sub(float x, float y, float z, float w) {
        return new Quaternionf(this.x - x, this.y - y, this.z - z, this.w - w);
    }

    /**
     * Multiplies the components of this quaternion by a double scalar.
     *
     * @param a The multiplication scalar
     * @return A new quaternion, which has each component multiplied by the scalar
     */
    public Quaternionf mul(double a) {
        return mul((float) a);
    }

    /**
     * Multiplies the components of this quaternion by a float scalar.
     *
     * @param a The multiplication scalar
     * @return A new quaternion, which has each component multiplied by the scalar
     */
    @Override
    public Quaternionf mul(float a) {
        return new Quaternionf(x * a, y * a, z * a, w * a);
    }

    /**
     * Multiplies another quaternion with this one.
     *
     * @param q The quaternion to multiply with
     * @return A new quaternion, which is the product of both
     */
    public Quaternionf mul(Quaternionf q) {
        return mul(q.x, q.y, q.z, q.w);
    }

    /**
     * Multiplies the double components of another quaternion with this one.
     *
     * @param x The x (imaginary) component of the quaternion to multiply with
     * @param y The y (imaginary) component of the quaternion to multiply with
     * @param z The z (imaginary) component of the quaternion to multiply with
     * @param w The w (real) component of the quaternion to multiply with
     * @return A new quaternion, which is the product of both
     */
    public Quaternionf mul(double x, double y, double z, double w) {
        return mul((float) x, (float) y, (float) z, (float) w);
    }

    /**
     * Multiplies the float components of another quaternion with this one.
     *
     * @param x The x (imaginary) component of the quaternion to multiply with
     * @param y The y (imaginary) component of the quaternion to multiply with
     * @param z The z (imaginary) component of the quaternion to multiply with
     * @param w The w (real) component of the quaternion to multiply with
     * @return A new quaternion, which is the product of both
     */
    public Quaternionf mul(float x, float y, float z, float w) {
        return new Quaternionf(
                this.w * x + this.x * w + this.y * z - this.z * y,
                this.w * y + this.y * w + this.z * x - this.x * z,
                this.w * z + this.z * w + this.x * y - this.y * x,
                this.w * w - this.x * x - this.y * y - this.z * z);
    }

    /**
     * Divides the components of this quaternion by a double scalar.
     *
     * @param a The division scalar
     * @return A new quaternion, which has each component divided by the scalar
     */
    public Quaternionf div(double a) {
        return div((float) a);
    }

    /**
     * Divides the components of this quaternion by a float scalar.
     *
     * @param a The division scalar
     * @return A new quaternion, which has each component divided by the scalar
     */
    @Override
    public Quaternionf div(float a) {
        return new Quaternionf(x / a, y / a, z / a, w / a);
    }

    /**
     * Divides this quaternions by another one.
     *
     * @param q The quaternion to divide with
     * @return The quotient of the two quaternions
     */
    public Quaternionf div(Quaternionf q) {
        return div(q.x, q.y, q.z, q.w);
    }

    /**
     * Divides this quaternions by the double components of another one.
     *
     * @param x The x (imaginary) component of the quaternion to divide with
     * @param y The y (imaginary) component of the quaternion to divide with
     * @param z The z (imaginary) component of the quaternion to divide with
     * @param w The w (real) component of the quaternion to divide with
     * @return The quotient of the two quaternions
     */
    public Quaternionf div(double x, double y, double z, double w) {
        return div((float) x, (float) y, (float) z, (float) w);
    }

    /**
     * Divides this quaternions by the float components of another one.
     *
     * @param x The x (imaginary) component of the quaternion to divide with
     * @param y The y (imaginary) component of the quaternion to divide with
     * @param z The z (imaginary) component of the quaternion to divide with
     * @param w The w (real) component of the quaternion to divide with
     * @return The quotient of the two quaternions
     */
    public Quaternionf div(float x, float y, float z, float w) {
        final float d = x * x + y * y + z * z + w * w;
        return new Quaternionf(
                (this.x * w - this.w * x - this.z * y + this.y * z) / d,
                (this.y * w + this.z * x - this.w * y - this.x * z) / d,
                (this.z * w - this.y * x + this.x * y - this.w * z) / d,
                (this.w * w + this.x * x + this.y * y + this.z * z) / d);
    }

    /**
     * Returns the dot product of this quaternion with another one.
     *
     * @param q The quaternion to calculate the dot product with
     * @return The dot product of the two quaternions
     */
    public float dot(Quaternionf q) {
        return dot(q.x, q.y, q.z, q.w);
    }

    /**
     * Returns the dot product of this quaternion with the double components of another one.
     *
     * @param x The x (imaginary) component of the quaternion to calculate the dot product with
     * @param y The y (imaginary) component of the quaternion to calculate the dot product with
     * @param z The z (imaginary) component of the quaternion to calculate the dot product with
     * @param w The w (real) component of the quaternion to calculate the dot product with
     * @return The dot product of the two quaternions
     */
    public float dot(double x, double y, double z, double w) {
        return dot((float) x, (float) y, (float) z, (float) w);
    }

    /**
     * Returns the dot product of this quaternion with the float components of another one.
     *
     * @param x The x (imaginary) component of the quaternion to calculate the dot product with
     * @param y The y (imaginary) component of the quaternion to calculate the dot product with
     * @param z The z (imaginary) component of the quaternion to calculate the dot product with
     * @param w The w (real) component of the quaternion to calculate the dot product with
     * @return The dot product of the two quaternions
     */
    public float dot(float x, float y, float z, float w) {
        return this.x * x + this.y * y + this.z * z + this.w * w;
    }

    /**
     * Rotates a vector by this quaternion.
     *
     * @param v The vector to rotate
     * @return The rotated vector
     */
    public Vector3f rotate(Vector3f v) {
        return rotate(v.getX(), v.getY(), v.getZ());
    }

    /**
     * Rotates the double components of a vector by this quaternion.
     *
     * @param x The x component of the vector
     * @param y The y component of the vector
     * @param z The z component of the vector
     * @return The rotated vector
     */
    public Vector3f rotate(double x, double y, double z) {
        return rotate((float) x, (float) y, (float) z);
    }

    /**
     * Rotates the float components of a vector by this quaternion.
     *
     * @param x The x component of the vector
     * @param y The y component of the vector
     * @param z The z component of the vector
     * @return The rotated vector
     */
    public Vector3f rotate(float x, float y, float z) {
        final float length = length();
        if (Math.abs(length) < GenericMath.FLT_EPSILON) {
            throw new ArithmeticException("Cannot rotate by the zero quaternion");
        }
        final float nx = this.x / length;
        final float ny = this.y / length;
        final float nz = this.z / length;
        final float nw = this.w / length;
        final float px = nw * x + ny * z - nz * y;
        final float py = nw * y + nz * x - nx * z;
        final float pz = nw * z + nx * y - ny * x;
        final float pw = -nx * x - ny * y - nz * z;
        return new Vector3f(
                pw * -nx + px * nw - py * nz + pz * ny,
                pw * -ny + py * nw - pz * nx + px * nz,
                pw * -nz + pz * nw - px * ny + py * nx);
    }

    /**
     * Returns a unit vector representing the direction of this quaternion, which is {@link Vector3f#FORWARD} rotated by this quaternion.
     *
     * @return The vector representing the direction this quaternion is pointing to
     */
    public Vector3f getDirection() {
        return rotate(Vector3f.FORWARD);
    }

    /**
     * Returns the axis of rotation for this quaternion.
     *
     * @return The axis of rotation
     */
    public Vector3f getAxis() {
        final float q = (float) Math.sqrt(1 - w * w);
        return new Vector3f(x / q, y / q, z / q);
    }

    /**
     * Returns the angles in degrees around the x, y and z axes that correspond to the rotation represented by this quaternion.
     *
     * @return The angle in degrees for each axis, stored in a vector, in the corresponding component
     */
    public Vector3f getAxesAnglesDeg() {
        return getAxesAnglesRad().mul(TrigMath.RAD_TO_DEG);
    }

    /**
     * Returns the angles in radians around the x, y and z axes that correspond to the rotation represented by this quaternion.
     *
     * @return The angle in radians for each axis, stored in a vector, in the corresponding component
     */
    public Vector3f getAxesAnglesRad() {
        final double roll;
        final double pitch;
        double yaw;
        final double test = w * x - y * z;
        if (Math.abs(test) < 0.4999) {
            roll = TrigMath.atan2(2 * (w * z + x * y), 1 - 2 * (x * x + z * z));
            pitch = TrigMath.asin(2 * test);
            yaw = TrigMath.atan2(2 * (w * y + z * x), 1 - 2 * (x * x + y * y));
        } else {
            final int sign = (test < 0) ? -1 : 1;
            roll = 0;
            pitch = sign * Math.PI / 2;
            yaw = -sign * 2 * TrigMath.atan2(z, w);
        }
        return new Vector3f(pitch, yaw, roll);
    }

    /**
     * Conjugates the quaternion. 
Conjugation of a quaternion a is an operation returning quaternion a' such that a' * a = a * a' = |a|2 where * |a|2 is squared length of a. * * @return the conjugated quaternion */ @Override public Quaternionf conjugate() { return new Quaternionf(-x, -y, -z, w); } /** * Inverts the quaternion.
Inversion of a quaternion a returns quaternion a-1 = a' / |a|2 where a' is {@link #conjugate() * conjugation} of a, and |a|2 is squared length of a.
For any quaternions a, b, c, such that a * b = c equations * a-1 * c = b and c * b-1 = a are true. * * @return the inverted quaternion */ @Override public Quaternionf invert() { final float lengthSquared = lengthSquared(); if (Math.abs(lengthSquared) < GenericMath.FLT_EPSILON) { throw new ArithmeticException("Cannot invert a quaternion of length zero"); } return conjugate().div(lengthSquared); } /** * Returns the square of the length of this quaternion. * * @return The square of the length */ @Override public float lengthSquared() { return x * x + y * y + z * z + w * w; } /** * Returns the length of this quaternion. * * @return The length */ @Override public float length() { return (float) Math.sqrt(lengthSquared()); } /** * Normalizes this quaternion. * * @return A new quaternion of unit length */ @Override public Quaternionf normalize() { final float length = length(); if (Math.abs(length) < GenericMath.FLT_EPSILON) { throw new ArithmeticException("Cannot normalize the zero quaternion"); } return new Quaternionf(x / length, y / length, z / length, w / length); } /** * Converts this quaternion to a complex by extracting the rotation around * the axis and returning it as a rotation in the plane perpendicular to the * rotation axis. * * @return The rotation without the axis as a complex */ public Complexf toComplex() { final float w2 = w * w; return new Complexf(2 * w2 - 1, 2 * w * (float) Math.sqrt(1 - w2)); } @Override public Quaternionf toFloat() { return new Quaternionf(x, y, z, w); } @Override public Quaterniond toDouble() { return new Quaterniond(x, y, z, w); } @Override public boolean equals(Object o) { if (this == o) { return true; } if (!(o instanceof Quaternionf)) { return false; } final Quaternionf quaternion = (Quaternionf) o; if (Float.compare(quaternion.w, w) != 0) { return false; } if (Float.compare(quaternion.x, x) != 0) { return false; } if (Float.compare(quaternion.y, y) != 0) { return false; } if (Float.compare(quaternion.z, z) != 0) { return false; } return true; } @Override public int hashCode() { if (!hashed) { int result = (x != +0.0f ? HashFunctions.hash(x) : 0); result = 31 * result + (y != +0.0f ? HashFunctions.hash(y) : 0); result = 31 * result + (z != +0.0f ? HashFunctions.hash(z) : 0); hashCode = 31 * result + (w != +0.0f ? HashFunctions.hash(w) : 0); hashed = true; } return hashCode; } @Override public int compareTo(Quaternionf q) { return (int) Math.signum(lengthSquared() - q.lengthSquared()); } @Override public Quaternionf clone() { return new Quaternionf(this); } @Override public String toString() { return "(" + x + ", " + y + ", " + z + ", " + w + ")"; } /** * Creates a new quaternion from the float real component. * *

The {@link #ZERO} constant is re-used when {@code w} is 0.

* * @param w The w (real) component * @return The quaternion created from the float real component */ public static Quaternionf fromReal(float w) { return w == 0 ? ZERO : new Quaternionf(0, 0, 0, w); } /** * Creates a new quaternion from the float imaginary components. * *

The {@link #ZERO} constant is re-used when {@code x}, {@code y}, and {@code z} are 0.

* * @param x The x (imaginary) component * @param y The y (imaginary) component * @param z The z (imaginary) component * @return The quaternion created from the float imaginary components */ public static Quaternionf fromImaginary(float x, float y, float z) { return x == 0 && y == 0 && z == 0 ? ZERO : new Quaternionf(x, y, z, 0); } /** * Creates a new quaternion from the float components. * *

The {@link #ZERO} constant is re-used when {@code x}, {@code y}, {@code z}, and {@code w} are 0.

* * @param x The x (imaginary) component * @param y The y (imaginary) component * @param z The z (imaginary) component * @param w The w (real) component * @return The quaternion created from the float components */ public static Quaternionf from(float x, float y, float z, float w) { return x == 0 && y == 0 && z == 0 && w == 0 ? ZERO : new Quaternionf(x, y, z, w); } /** * Creates a new quaternion from the double angles in degrees around the x, y and z axes. * * @param pitch The rotation around x * @param yaw The rotation around y * @param roll The rotation around z * @return The quaternion defined by the rotations around the axes */ public static Quaternionf fromAxesAnglesDeg(double pitch, double yaw, double roll) { return fromAxesAnglesDeg((float) pitch, (float) yaw, (float) roll); } /** * Creates a new quaternion from the double angles in radians around the x, y and z axes. * * @param pitch The rotation around x * @param yaw The rotation around y * @param roll The rotation around z * @return The quaternion defined by the rotations around the axes */ public static Quaternionf fromAxesAnglesRad(double pitch, double yaw, double roll) { return fromAxesAnglesRad((float) pitch, (float) yaw, (float) roll); } /** * Creates a new quaternion from the float angles in degrees around the x, y and z axes. * * @param pitch The rotation around x * @param yaw The rotation around y * @param roll The rotation around z * @return The quaternion defined by the rotations around the axes */ public static Quaternionf fromAxesAnglesDeg(float pitch, float yaw, float roll) { return Quaternionf.fromAngleDegAxis(yaw, Vector3f.UNIT_Y). mul(Quaternionf.fromAngleDegAxis(pitch, Vector3f.UNIT_X)). mul(Quaternionf.fromAngleDegAxis(roll, Vector3f.UNIT_Z)); } /** * Creates a new quaternion from the float angles in radians around the x, y and z axes. * * @param pitch The rotation around x * @param yaw The rotation around y * @param roll The rotation around z * @return The quaternion defined by the rotations around the axes */ public static Quaternionf fromAxesAnglesRad(float pitch, float yaw, float roll) { return Quaternionf.fromAngleRadAxis(yaw, Vector3f.UNIT_Y). mul(Quaternionf.fromAngleRadAxis(pitch, Vector3f.UNIT_X)). mul(Quaternionf.fromAngleRadAxis(roll, Vector3f.UNIT_Z)); } /** * Creates a new quaternion from the angle-axis rotation defined from the first to the second vector. * * @param from The first vector * @param to The second vector * @return The quaternion defined by the angle-axis rotation between the vectors */ public static Quaternionf fromRotationTo(Vector3f from, Vector3f to) { return Quaternionf.fromAngleRadAxis(TrigMath.acos(from.dot(to) / (from.length() * to.length())), from.cross(to)); } /** * Creates a new quaternion from the rotation double angle in degrees around the axis vector. * * @param angle The rotation angle in degrees * @param axis The axis of rotation * @return The quaternion defined by the rotation around the axis */ public static Quaternionf fromAngleDegAxis(double angle, Vector3f axis) { return fromAngleRadAxis(Math.toRadians(angle), axis); } /** * Creates a new quaternion from the rotation double angle in radians around the axis vector. * * @param angle The rotation angle in radians * @param axis The axis of rotation * @return The quaternion defined by the rotation around the axis */ public static Quaternionf fromAngleRadAxis(double angle, Vector3f axis) { return fromAngleRadAxis((float) angle, axis); } /** * Creates a new quaternion from the rotation float angle in degrees around the axis vector. * * @param angle The rotation angle in degrees * @param axis The axis of rotation * @return The quaternion defined by the rotation around the axis */ public static Quaternionf fromAngleDegAxis(float angle, Vector3f axis) { return fromAngleRadAxis((float) Math.toRadians(angle), axis); } /** * Creates a new quaternion from the rotation float angle in radians around the axis vector. * * @param angle The rotation angle in radians * @param axis The axis of rotation * @return The quaternion defined by the rotation around the axis */ public static Quaternionf fromAngleRadAxis(float angle, Vector3f axis) { return fromAngleRadAxis(angle, axis.getX(), axis.getY(), axis.getZ()); } /** * Creates a new quaternion from the rotation double angle in degrees around the axis vector double components. * * @param angle The rotation angle in degrees * @param x The x component of the axis vector * @param y The y component of the axis vector * @param z The z component of the axis vector * @return The quaternion defined by the rotation around the axis */ public static Quaternionf fromAngleDegAxis(double angle, double x, double y, double z) { return fromAngleRadAxis(Math.toRadians(angle), x, y, z); } /** * Creates a new quaternion from the rotation double angle in radians around the axis vector double components. * * @param angle The rotation angle in radians * @param x The x component of the axis vector * @param y The y component of the axis vector * @param z The z component of the axis vector * @return The quaternion defined by the rotation around the axis */ public static Quaternionf fromAngleRadAxis(double angle, double x, double y, double z) { return fromAngleRadAxis((float) angle, (float) x, (float) y, (float) z); } /** * Creates a new quaternion from the rotation float angle in degrees around the axis vector float components. * * @param angle The rotation angle in degrees * @param x The x component of the axis vector * @param y The y component of the axis vector * @param z The z component of the axis vector * @return The quaternion defined by the rotation around the axis */ public static Quaternionf fromAngleDegAxis(float angle, float x, float y, float z) { return fromAngleRadAxis((float) Math.toRadians(angle), x, y, z); } /** * Creates a new quaternion from the rotation float angle in radians around the axis vector float components. * * @param angle The rotation angle in radians * @param x The x component of the axis vector * @param y The y component of the axis vector * @param z The z component of the axis vector * @return The quaternion defined by the rotation around the axis */ public static Quaternionf fromAngleRadAxis(float angle, float x, float y, float z) { final float halfAngle = angle / 2; final float q = TrigMath.sin(halfAngle) / (float) Math.sqrt(x * x + y * y + z * z); return new Quaternionf(x * q, y * q, z * q, TrigMath.cos(halfAngle)); } /** * Creates a new quaternion from the rotation matrix. The matrix will be interpreted as a rotation matrix even if it is not. * * @param matrix The rotation matrix * @return The quaternion defined by the rotation matrix */ public static Quaternionf fromRotationMatrix(Matrix3f matrix) { final float trace = matrix.trace(); if (trace < 0) { if (matrix.get(1, 1) > matrix.get(0, 0)) { if (matrix.get(2, 2) > matrix.get(1, 1)) { final float r = (float) Math.sqrt(matrix.get(2, 2) - matrix.get(0, 0) - matrix.get(1, 1) + 1); final float s = 0.5f / r; return new Quaternionf( (matrix.get(2, 0) + matrix.get(0, 2)) * s, (matrix.get(1, 2) + matrix.get(2, 1)) * s, 0.5f * r, (matrix.get(1, 0) - matrix.get(0, 1)) * s); } else { final float r = (float) Math.sqrt(matrix.get(1, 1) - matrix.get(2, 2) - matrix.get(0, 0) + 1); final float s = 0.5f / r; return new Quaternionf( (matrix.get(0, 1) + matrix.get(1, 0)) * s, 0.5f * r, (matrix.get(1, 2) + matrix.get(2, 1)) * s, (matrix.get(0, 2) - matrix.get(2, 0)) * s); } } else if (matrix.get(2, 2) > matrix.get(0, 0)) { final float r = (float) Math.sqrt(matrix.get(2, 2) - matrix.get(0, 0) - matrix.get(1, 1) + 1); final float s = 0.5f / r; return new Quaternionf( (matrix.get(2, 0) + matrix.get(0, 2)) * s, (matrix.get(1, 2) + matrix.get(2, 1)) * s, 0.5f * r, (matrix.get(1, 0) - matrix.get(0, 1)) * s); } else { final float r = (float) Math.sqrt(matrix.get(0, 0) - matrix.get(1, 1) - matrix.get(2, 2) + 1); final float s = 0.5f / r; return new Quaternionf( 0.5f * r, (matrix.get(0, 1) + matrix.get(1, 0)) * s, (matrix.get(2, 0) - matrix.get(0, 2)) * s, (matrix.get(2, 1) - matrix.get(1, 2)) * s); } } else { final float r = (float) Math.sqrt(trace + 1); final float s = 0.5f / r; return new Quaternionf( (matrix.get(2, 1) - matrix.get(1, 2)) * s, (matrix.get(0, 2) - matrix.get(2, 0)) * s, (matrix.get(1, 0) - matrix.get(0, 1)) * s, 0.5f * r); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy