com.fluxtion.agrona.concurrent.ManyToManyConcurrentArrayQueue Maven / Gradle / Ivy
/*
* Copyright 2014-2024 Real Logic Limited.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fluxtion.agrona.concurrent;
import com.fluxtion.agrona.hints.ThreadHints;
import java.util.Collection;
import java.util.function.Consumer;
import static com.fluxtion.agrona.UnsafeAccess.UNSAFE;
/**
* Many producer to many consumer concurrent queue that is array backed.
*
* This is a Java port of Dmitry Vyukov's
* MPMC queue.
*
* Note: This queue breaks the contract for peek and poll in that it can return null when the queue has no item
* available but size could be greater than zero if an offer is in progress. This is due to the offer being a multiple
* step process which can start and be interrupted before completion, the thread will later be resumed and the offer
* process completes. Other methods, such as peek and poll, could spin internally waiting on the offer to complete to
* provide sequentially consistency across methods but this can have a detrimental effect in a resource starved system.
* This internal spinning eats up a CPU core and prevents other threads making progress resulting in latency spikes. To
* avoid this a more relaxed approach is taken in that an in-progress offer is not waited on to complete. The poll
* method has similar properties for the multi-consumer implementation.
*
* If you wish to check for empty then call {@link #isEmpty()} rather than {@link #size()} checking for zero.
*
* @param type of the elements stored in the {@link java.util.Queue}.
*/
@SuppressWarnings("removal")
public class ManyToManyConcurrentArrayQueue extends AbstractConcurrentArrayQueue
{
private static final int SEQUENCES_ARRAY_BASE = UNSAFE.arrayBaseOffset(long[].class);
private final long[] sequences;
/**
* Create a new queue with a bounded capacity. The requested capacity will be rounded up to the next positive
* power-of-two in size. That is if you request a capacity of 1000 then you will get 1024. If you request 1024
* then that is what you will get.
*
* @param requestedCapacity of the queue which must be >= 2.
* @throws IllegalArgumentException if the requestedCapacity < 2.
*/
public ManyToManyConcurrentArrayQueue(final int requestedCapacity)
{
super(requestedCapacity);
if (requestedCapacity < 2)
{
throw new IllegalArgumentException(
"requestedCapacity must be >= 2: requestedCapacity=" + requestedCapacity);
}
final long[] sequences = new long[capacity];
for (int i = 0; i < capacity; i++)
{
sequences[i] = i;
}
UNSAFE.putLongVolatile(sequences, sequenceArrayOffset(0, sequences.length - 1), 0);
this.sequences = sequences;
}
/**
* {@inheritDoc}
*/
public boolean offer(final E e)
{
if (null == e)
{
throw new NullPointerException("element cannot be null");
}
final long mask = this.capacity - 1;
final long[] sequences = this.sequences;
final E[] buffer = this.buffer;
while (true)
{
final long currentTail = tail;
final long sequenceOffset = sequenceArrayOffset(currentTail, mask);
final long sequence = UNSAFE.getLongVolatile(sequences, sequenceOffset);
if (sequence < currentTail)
{
return false;
}
if (UNSAFE.compareAndSwapLong(this, TAIL_OFFSET, currentTail, currentTail + 1L))
{
UNSAFE.putObject(buffer, sequenceToBufferOffset(currentTail, mask), e);
UNSAFE.putOrderedLong(sequences, sequenceOffset, currentTail + 1L);
return true;
}
ThreadHints.onSpinWait();
}
}
/**
* {@inheritDoc}
*/
@SuppressWarnings("unchecked")
public E poll()
{
final long[] sequences = this.sequences;
final E[] buffer = this.buffer;
final long mask = this.capacity - 1;
while (true)
{
final long currentHead = head;
final long sequenceOffset = sequenceArrayOffset(currentHead, mask);
final long sequence = UNSAFE.getLongVolatile(sequences, sequenceOffset);
final long attemptedHead = currentHead + 1L;
if (sequence < attemptedHead)
{
return null;
}
if (UNSAFE.compareAndSwapLong(this, HEAD_OFFSET, currentHead, attemptedHead))
{
final long elementOffset = sequenceToBufferOffset(currentHead, mask);
final Object e = UNSAFE.getObject(buffer, elementOffset);
UNSAFE.putObject(buffer, elementOffset, null);
UNSAFE.putOrderedLong(sequences, sequenceOffset, attemptedHead + mask);
return (E)e;
}
ThreadHints.onSpinWait();
}
}
/**
* {@inheritDoc}
*/
@SuppressWarnings("unchecked")
public E peek()
{
final long[] sequences = this.sequences;
final E[] buffer = this.buffer;
final long mask = this.capacity - 1;
while (true)
{
final long currentHead = head;
final long sequenceOffset = sequenceArrayOffset(currentHead, mask);
final long sequence = UNSAFE.getLongVolatile(sequences, sequenceOffset);
final long attemptedHead = currentHead + 1L;
if (sequence < attemptedHead)
{
return null;
}
if (sequence == attemptedHead)
{
final long elementOffset = sequenceToBufferOffset(currentHead, mask);
final Object e = UNSAFE.getObject(buffer, elementOffset);
if (currentHead == head)
{
return (E)e;
}
}
ThreadHints.onSpinWait();
}
}
/**
* {@inheritDoc}
*/
public int drain(final Consumer elementConsumer)
{
return drain(elementConsumer, size());
}
/**
* {@inheritDoc}
*/
public int drain(final Consumer elementConsumer, final int limit)
{
int count = 0;
E e;
while (count < limit && null != (e = poll()))
{
elementConsumer.accept(e);
++count;
}
return count;
}
/**
* {@inheritDoc}
*/
public int drainTo(final Collection super E> target, final int limit)
{
int count = 0;
while (count < limit)
{
final E e = poll();
if (null == e)
{
break;
}
target.add(e);
++count;
}
return count;
}
private static long sequenceArrayOffset(final long sequence, final long mask)
{
return SEQUENCES_ARRAY_BASE + ((sequence & mask) << 3);
}
}