com.fluxtion.agrona.concurrent.ManyToOneConcurrentArrayQueue Maven / Gradle / Ivy
/*
* Copyright 2014-2024 Real Logic Limited.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fluxtion.agrona.concurrent;
import java.util.Collection;
import java.util.function.Consumer;
import static com.fluxtion.agrona.UnsafeAccess.UNSAFE;
/**
* Many producer to one consumer concurrent queue that is array backed. The algorithm is a variation of Fast Flow
* consumer adapted to work with the Java Memory Model on arrays by using {@link sun.misc.Unsafe}.
*
* Note: This queue breaks the contract for peek and poll in that it can return null when the queue has no item
* available but size could be greater than zero if an offer is in progress. This is due to the offer being a multiple
* step process which can start and be interrupted before completion, the thread will later be resumed and the offer
* process completes. Other methods, such as peek and poll, could spin internally waiting on the offer to complete to
* provide sequentially consistency across methods but this can have a detrimental effect in a resource starved system.
* This internal spinning eats up a CPU core and prevents other threads making progress resulting in latency spikes. To
* avoid this a more relaxed approach is taken in that an in-progress offer is not waited on to complete.
*
* If you wish to check for empty then call {@link #isEmpty()} rather than {@link #size()} checking for zero.
*
* @param type of the elements stored in the {@link java.util.Queue}.
*/
@SuppressWarnings("removal")
public class ManyToOneConcurrentArrayQueue extends AbstractConcurrentArrayQueue
{
/**
* Constructs a queue with the requested capacity.
*
* @param requestedCapacity of the queue.
*/
public ManyToOneConcurrentArrayQueue(final int requestedCapacity)
{
super(requestedCapacity);
}
/**
* {@inheritDoc}
*/
public boolean offer(final E e)
{
if (null == e)
{
throw new NullPointerException("element cannot be null");
}
final int capacity = this.capacity;
long currentHead = sharedHeadCache;
long bufferLimit = currentHead + capacity;
long currentTail;
do
{
currentTail = tail;
if (currentTail >= bufferLimit)
{
currentHead = head;
bufferLimit = currentHead + capacity;
if (currentTail >= bufferLimit)
{
return false;
}
UNSAFE.putOrderedLong(this, SHARED_HEAD_CACHE_OFFSET, currentHead);
}
}
while (!UNSAFE.compareAndSwapLong(this, TAIL_OFFSET, currentTail, currentTail + 1));
UNSAFE.putOrderedObject(buffer, sequenceToBufferOffset(currentTail, capacity - 1), e);
return true;
}
/**
* {@inheritDoc}
*/
@SuppressWarnings("unchecked")
public E poll()
{
final long currentHead = head;
final long elementOffset = sequenceToBufferOffset(currentHead, capacity - 1);
final Object[] buffer = this.buffer;
final Object e = UNSAFE.getObjectVolatile(buffer, elementOffset);
if (null != e)
{
UNSAFE.putObject(buffer, elementOffset, null);
UNSAFE.putOrderedLong(this, HEAD_OFFSET, currentHead + 1);
}
return (E)e;
}
/**
* {@inheritDoc}
*/
public int drain(final Consumer elementConsumer)
{
return drain(elementConsumer, (int)(tail - head));
}
/**
* {@inheritDoc}
*/
@SuppressWarnings("unchecked")
public int drain(final Consumer elementConsumer, final int limit)
{
final Object[] buffer = this.buffer;
final long mask = this.capacity - 1;
final long currentHead = head;
long nextSequence = currentHead;
final long limitSequence = nextSequence + limit;
while (nextSequence < limitSequence)
{
final long elementOffset = sequenceToBufferOffset(nextSequence, mask);
final Object item = UNSAFE.getObjectVolatile(buffer, elementOffset);
if (null == item)
{
break;
}
UNSAFE.putOrderedObject(buffer, elementOffset, null);
nextSequence++;
UNSAFE.putOrderedLong(this, HEAD_OFFSET, nextSequence);
elementConsumer.accept((E)item);
}
return (int)(nextSequence - currentHead);
}
/**
* {@inheritDoc}
*/
@SuppressWarnings("unchecked")
public int drainTo(final Collection super E> target, final int limit)
{
final Object[] buffer = this.buffer;
final long mask = this.capacity - 1;
long nextSequence = head;
int count = 0;
while (count < limit)
{
final long elementOffset = sequenceToBufferOffset(nextSequence, mask);
final Object e = UNSAFE.getObjectVolatile(buffer, elementOffset);
if (null == e)
{
break;
}
UNSAFE.putOrderedObject(buffer, elementOffset, null);
nextSequence++;
UNSAFE.putOrderedLong(this, HEAD_OFFSET, nextSequence);
count++;
target.add((E)e);
}
return count;
}
}