All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.genexus.util.Rijndael_Algorithm Maven / Gradle / Ivy

Go to download

Core classes for the runtime used by Java and Android apps generated with GeneXus

There is a newer version: 4.7.0
Show newest version
/*
 * Copyright (c) 1997, 1998 Systemics Ltd on behalf of
 * the Cryptix Development Team. All rights reserved.
 */
package com.genexus.util;

import java.io.PrintWriter;
import java.security.InvalidKeyException;

//...........................................................................
/**
 * Rijndael --pronounced Reindaal-- is a variable block-size (128-, 192- and
 * 256-bit), variable key-size (128-, 192- and 256-bit) symmetric cipher.

* * Rijndael was written by Vincent * Rijmen and Joan Daemen.

* * Portions of this code are Copyright © 1997, 1998 * Systemics Ltd on behalf of the * Cryptix Development Team. *
All rights reserved.

* * @author Raif S. Naffah * @author Paulo S. L. M. Barreto * * License is apparently available from http://www.cryptix.org/docs/license.html */ public final class Rijndael_Algorithm // implicit no-argument constructor { // Debugging methods and variables //........................................................................... static final String NAME = "Rijndael_Algorithm"; static final boolean IN = true, OUT = false; static final boolean RDEBUG = Rijndael_Properties.GLOBAL_DEBUG; static final int debuglevel = RDEBUG ? Rijndael_Properties.getLevel(NAME) : 0; static final PrintWriter err = RDEBUG ? Rijndael_Properties.getOutput() : null; // static final PrintWriter err = null; static final boolean TRACE = Rijndael_Properties.isTraceable(NAME); static void debug (String s) { if (err != null) err.println(">>> "+NAME+": "+s); } static void trace (boolean in, String s) { if (TRACE && err != null) err.println((in?"==> ":"<== ")+NAME+"."+s); } static void trace (String s) { if (TRACE && err != null) err.println("<=> "+NAME+"."+s); } // Constants and variables //........................................................................... public static final int BLOCK_SIZE = 16; // default block size in bytes static final int[] alog = new int[256]; static final int[] log = new int[256]; static final byte[] S = new byte[256]; static final byte[] Si = new byte[256]; static final int[] T1 = new int[256]; static final int[] T2 = new int[256]; static final int[] T3 = new int[256]; static final int[] T4 = new int[256]; static final int[] T5 = new int[256]; static final int[] T6 = new int[256]; static final int[] T7 = new int[256]; static final int[] T8 = new int[256]; static final int[] U1 = new int[256]; static final int[] U2 = new int[256]; static final int[] U3 = new int[256]; static final int[] U4 = new int[256]; static final byte[] rcon = new byte[30]; static final int[][][] shifts = new int[][][] { { {0, 0}, {1, 3}, {2, 2}, {3, 1} }, { {0, 0}, {1, 5}, {2, 4}, {3, 3} }, { {0, 0}, {1, 7}, {3, 5}, {4, 4} } }; private static final char[] HEX_DIGITS = { '0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F' }; // Static code - to intialise S-boxes and T-boxes //........................................................................... static { long time = System.currentTimeMillis(); if (RDEBUG && debuglevel > 6) { System.out.println("Algorithm Name: "+Rijndael_Properties.FULL_NAME); System.out.println("Electronic Codebook (ECB) Mode"); System.out.println(); } int ROOT = 0x11B; int i, j = 0; // // produce log and alog tables, needed for multiplying in the // field GF(2^m) (generator = 3) // generateLogAndAlogTables(ROOT); generateSBoxes(); // // T-boxes // byte[][] G = new byte[][] { {2, 1, 1, 3}, {3, 2, 1, 1}, {1, 3, 2, 1}, {1, 1, 3, 2} }; byte[][] iG = generateInvertedGMatrix(G); generateTBoxes(G, iG); // // round constants // rcon[0] = 1; int r = 1; for (int t = 1; t < 30; ) rcon[t++] = (byte)(r = mul(2, r)); time = System.currentTimeMillis() - time; if (RDEBUG && debuglevel > 8) { System.out.println("=========="); System.out.println(); System.out.println("Static Data"); System.out.println(); System.out.println("S[]:"); for(i=0;i<16;i++) { for(j=0;j<16;j++) System.out.print("0x"+byteToString(S[i*16+j])+", "); System.out.println();} System.out.println(); System.out.println("Si[]:"); for(i=0;i<16;i++) { for(j=0;j<16;j++) System.out.print("0x"+byteToString(Si[i*16+j])+", "); System.out.println();} System.out.println(); System.out.println("iG[]:"); for(i=0;i<4;i++){for(j=0;j<4;j++) System.out.print("0x"+byteToString(iG[i][j])+", "); System.out.println();} System.out.println(); System.out.println("T1[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T1[i*4+j])+", "); System.out.println();} System.out.println(); System.out.println("T2[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T2[i*4+j])+", "); System.out.println();} System.out.println(); System.out.println("T3[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T3[i*4+j])+", "); System.out.println();} System.out.println(); System.out.println("T4[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T4[i*4+j])+", "); System.out.println();} System.out.println(); System.out.println("T5[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T5[i*4+j])+", "); System.out.println();} System.out.println(); System.out.println("T6[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T6[i*4+j])+", "); System.out.println();} System.out.println(); System.out.println("T7[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T7[i*4+j])+", "); System.out.println();} System.out.println(); System.out.println("T8[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T8[i*4+j])+", "); System.out.println();} System.out.println(); System.out.println("U1[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(U1[i*4+j])+", "); System.out.println();} System.out.println(); System.out.println("U2[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(U2[i*4+j])+", "); System.out.println();} System.out.println(); System.out.println("U3[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(U3[i*4+j])+", "); System.out.println();} System.out.println(); System.out.println("U4[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(U4[i*4+j])+", "); System.out.println();} System.out.println(); System.out.println("rcon[]:"); for(i=0;i<5;i++){for(j=0;j<6;j++) System.out.print("0x"+byteToString(rcon[i*6+j])+", "); System.out.println();} System.out.println(); System.out.println("Total initialization time: "+time+" ms."); System.out.println(); } } private static void generateLogAndAlogTables(int ROOT) { alog[0] = 1; for (int i = 1; i < 256; i++) { int j = (alog[i-1] << 1) ^ alog[i-1]; if ((j & 0x100) != 0) j ^= ROOT; alog[i] = j; } for (int i = 1; i < 255; i++) log[alog[i]] = i; } private static void generateSBoxes() { byte[][] A = new byte[][] { {1, 1, 1, 1, 1, 0, 0, 0}, {0, 1, 1, 1, 1, 1, 0, 0}, {0, 0, 1, 1, 1, 1, 1, 0}, {0, 0, 0, 1, 1, 1, 1, 1}, {1, 0, 0, 0, 1, 1, 1, 1}, {1, 1, 0, 0, 0, 1, 1, 1}, {1, 1, 1, 0, 0, 0, 1, 1}, {1, 1, 1, 1, 0, 0, 0, 1} }; byte[] B = new byte[] { 0, 1, 1, 0, 0, 0, 1, 1}; // // substitution box based on F^{-1}(x) // byte[][] box = new byte[256][8]; box[1][7] = 1; for (int i = 2; i < 256; i++) { int j = alog[255 - log[i]]; for (int t = 0; t < 8; t++) box[i][t] = (byte)((j >>> (7 - t)) & 0x01); } // // affine transform: box[i] <- B + A*box[i] // byte[][] cox = new byte[256][8]; for (int i = 0; i < 256; i++) for (int t = 0; t < 8; t++) { cox[i][t] = B[t]; for (int j = 0; j < 8; j++) cox[i][t] ^= A[t][j] * box[i][j]; } // // S-boxes and inverse S-boxes // for (int i = 0; i < 256; i++) { S[i] = (byte)(cox[i][0] << 7); for (int t = 1; t < 8; t++) S[i] ^= cox[i][t] << (7-t); Si[S[i] & 0xFF] = (byte) i; } } private static byte[][] generateInvertedGMatrix(byte[][] gMatrix) { byte[][] AA = new byte[4][8]; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) AA[i][j] = gMatrix[i][j]; AA[i][i+4] = 1; } byte pivot, tmp; byte[][] iG = new byte[4][4]; for (int i = 0; i < 4; i++) { pivot = AA[i][i]; if (pivot == 0) { int t = i + 1; while ((AA[t][i] == 0) && (t < 4)) t++; if (t == 4) throw new RuntimeException("G matrix is not invertible"); else { for (int j = 0; j < 8; j++) { tmp = AA[i][j]; AA[i][j] = AA[t][j]; AA[t][j] = tmp; } pivot = AA[i][i]; } } for (int j = 0; j < 8; j++) if (AA[i][j] != 0) AA[i][j] = (byte) alog[(255 + log[AA[i][j] & 0xFF] - log[pivot & 0xFF]) % 255]; for (int t = 0; t < 4; t++) if (i != t) { for (int j = i+1; j < 8; j++) AA[t][j] ^= mul(AA[i][j], AA[t][i]); AA[t][i] = 0; } } for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) iG[i][j] = AA[i][j + 4]; return iG; } private static void generateTBoxes(byte[][] g, byte[][] iG) { for (int t = 0; t < 256; t++) { int s = S[t]; T1[t] = mul4(s, g[0]); T2[t] = mul4(s, g[1]); T3[t] = mul4(s, g[2]); T4[t] = mul4(s, g[3]); s = Si[t]; T5[t] = mul4(s, iG[0]); T6[t] = mul4(s, iG[1]); T7[t] = mul4(s, iG[2]); T8[t] = mul4(s, iG[3]); U1[t] = mul4(t, iG[0]); U2[t] = mul4(t, iG[1]); U3[t] = mul4(t, iG[2]); U4[t] = mul4(t, iG[3]); } } // multiply two elements of GF(2^m) static final int mul (int a, int b) { return (a != 0 && b != 0) ? alog[(log[a & 0xFF] + log[b & 0xFF]) % 255] : 0; } // convenience method used in generating Transposition boxes static final int mul4 (int a, byte[] b) { if (a == 0) return 0; a = log[a & 0xFF]; int a0 = (b[0] != 0) ? alog[(a + log[b[0] & 0xFF]) % 255] & 0xFF : 0; int a1 = (b[1] != 0) ? alog[(a + log[b[1] & 0xFF]) % 255] & 0xFF : 0; int a2 = (b[2] != 0) ? alog[(a + log[b[2] & 0xFF]) % 255] & 0xFF : 0; int a3 = (b[3] != 0) ? alog[(a + log[b[3] & 0xFF]) % 255] & 0xFF : 0; return a0 << 24 | a1 << 16 | a2 << 8 | a3; } // Basic API methods //........................................................................... /** * Convenience method to expand a user-supplied key material into a * session key, assuming Rijndael's default block size (128-bit). * * @param k The 128/192/256-bit user-key to use. * @exception InvalidKeyException If the key is invalid. */ public static final Object makeKey (byte[] k) throws InvalidKeyException { return makeKey(k, BLOCK_SIZE); } /** * Convenience method to encrypt exactly one block of plaintext, assuming * Rijndael's default block size (128-bit). * * @param in The plaintext. * @param result The buffer into which to write the resulting ciphertext. * @param inOffset Index of in from which to start considering data. * @param sessionKey The session key to use for encryption. */ public static final void blockEncrypt (byte[] in, byte[] result, int inOffset, Object sessionKey) { if (RDEBUG) trace(IN, "blockEncrypt("+in+", "+inOffset+", "+sessionKey+")"); int[][] Ke = (int[][]) ((Object[]) sessionKey)[0]; // extract encryption round keys int ROUNDS = Ke.length - 1; int[] Ker = Ke[0]; // plaintext to ints + key int t0 = ((in[inOffset++] & 0xFF) << 24 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) ) ^ Ker[0]; int t1 = ((in[inOffset++] & 0xFF) << 24 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) ) ^ Ker[1]; int t2 = ((in[inOffset++] & 0xFF) << 24 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) ) ^ Ker[2]; int t3 = ((in[inOffset++] & 0xFF) << 24 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) ) ^ Ker[3]; int a0, a1, a2, a3; for (int r = 1; r < ROUNDS; r++) { // apply round transforms Ker = Ke[r]; a0 = (T1[(t0 >>> 24) & 0xFF] ^ T2[(t1 >>> 16) & 0xFF] ^ T3[(t2 >>> 8) & 0xFF] ^ T4[ t3 & 0xFF] ) ^ Ker[0]; a1 = (T1[(t1 >>> 24) & 0xFF] ^ T2[(t2 >>> 16) & 0xFF] ^ T3[(t3 >>> 8) & 0xFF] ^ T4[ t0 & 0xFF] ) ^ Ker[1]; a2 = (T1[(t2 >>> 24) & 0xFF] ^ T2[(t3 >>> 16) & 0xFF] ^ T3[(t0 >>> 8) & 0xFF] ^ T4[ t1 & 0xFF] ) ^ Ker[2]; a3 = (T1[(t3 >>> 24) & 0xFF] ^ T2[(t0 >>> 16) & 0xFF] ^ T3[(t1 >>> 8) & 0xFF] ^ T4[ t2 & 0xFF] ) ^ Ker[3]; t0 = a0; t1 = a1; t2 = a2; t3 = a3; if (RDEBUG && debuglevel > 6) System.out.println("CT"+r+"="+intToString(t0)+intToString(t1)+intToString(t2)+intToString(t3)); } // last round is special Ker = Ke[ROUNDS]; int tt = Ker[0]; result[ 0] = (byte)(S[(t0 >>> 24) & 0xFF] ^ (tt >>> 24)); result[ 1] = (byte)(S[(t1 >>> 16) & 0xFF] ^ (tt >>> 16)); result[ 2] = (byte)(S[(t2 >>> 8) & 0xFF] ^ (tt >>> 8)); result[ 3] = (byte)(S[ t3 & 0xFF] ^ tt ); tt = Ker[1]; result[ 4] = (byte)(S[(t1 >>> 24) & 0xFF] ^ (tt >>> 24)); result[ 5] = (byte)(S[(t2 >>> 16) & 0xFF] ^ (tt >>> 16)); result[ 6] = (byte)(S[(t3 >>> 8) & 0xFF] ^ (tt >>> 8)); result[ 7] = (byte)(S[ t0 & 0xFF] ^ tt ); tt = Ker[2]; result[ 8] = (byte)(S[(t2 >>> 24) & 0xFF] ^ (tt >>> 24)); result[ 9] = (byte)(S[(t3 >>> 16) & 0xFF] ^ (tt >>> 16)); result[10] = (byte)(S[(t0 >>> 8) & 0xFF] ^ (tt >>> 8)); result[11] = (byte)(S[ t1 & 0xFF] ^ tt ); tt = Ker[3]; result[12] = (byte)(S[(t3 >>> 24) & 0xFF] ^ (tt >>> 24)); result[13] = (byte)(S[(t0 >>> 16) & 0xFF] ^ (tt >>> 16)); result[14] = (byte)(S[(t1 >>> 8) & 0xFF] ^ (tt >>> 8)); result[15] = (byte)(S[ t2 & 0xFF] ^ tt ); if (RDEBUG && debuglevel > 6) { System.out.println("CT="+toString(result)); System.out.println(); } if (RDEBUG) trace(OUT, "blockEncrypt()"); } /** * Convenience method to decrypt exactly one block of plaintext, assuming * Rijndael's default block size (128-bit). * * @param in The ciphertext. * @param result the resulting ciphertext * @param inOffset Index of in from which to start considering data. * @param sessionKey The session key to use for decryption. */ public static final void blockDecrypt (byte[] in, byte[] result, int inOffset, Object sessionKey) { if (RDEBUG) trace(IN, "blockDecrypt("+in+", "+inOffset+", "+sessionKey+")"); int[][] Kd = (int[][]) ((Object[]) sessionKey)[1]; // extract decryption round keys int ROUNDS = Kd.length - 1; int[] Kdr = Kd[0]; // ciphertext to ints + key int t0 = ((in[inOffset++] & 0xFF) << 24 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) ) ^ Kdr[0]; int t1 = ((in[inOffset++] & 0xFF) << 24 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) ) ^ Kdr[1]; int t2 = ((in[inOffset++] & 0xFF) << 24 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) ) ^ Kdr[2]; int t3 = ((in[inOffset++] & 0xFF) << 24 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) ) ^ Kdr[3]; int a0, a1, a2, a3; for (int r = 1; r < ROUNDS; r++) { // apply round transforms Kdr = Kd[r]; a0 = (T5[(t0 >>> 24) & 0xFF] ^ T6[(t3 >>> 16) & 0xFF] ^ T7[(t2 >>> 8) & 0xFF] ^ T8[ t1 & 0xFF] ) ^ Kdr[0]; a1 = (T5[(t1 >>> 24) & 0xFF] ^ T6[(t0 >>> 16) & 0xFF] ^ T7[(t3 >>> 8) & 0xFF] ^ T8[ t2 & 0xFF] ) ^ Kdr[1]; a2 = (T5[(t2 >>> 24) & 0xFF] ^ T6[(t1 >>> 16) & 0xFF] ^ T7[(t0 >>> 8) & 0xFF] ^ T8[ t3 & 0xFF] ) ^ Kdr[2]; a3 = (T5[(t3 >>> 24) & 0xFF] ^ T6[(t2 >>> 16) & 0xFF] ^ T7[(t1 >>> 8) & 0xFF] ^ T8[ t0 & 0xFF] ) ^ Kdr[3]; t0 = a0; t1 = a1; t2 = a2; t3 = a3; if (RDEBUG && debuglevel > 6) System.out.println("PT"+r+"="+intToString(t0)+intToString(t1)+intToString(t2)+intToString(t3)); } // last round is special Kdr = Kd[ROUNDS]; int tt = Kdr[0]; result[ 0] = (byte)(Si[(t0 >>> 24) & 0xFF] ^ (tt >>> 24)); result[ 1] = (byte)(Si[(t3 >>> 16) & 0xFF] ^ (tt >>> 16)); result[ 2] = (byte)(Si[(t2 >>> 8) & 0xFF] ^ (tt >>> 8)); result[ 3] = (byte)(Si[ t1 & 0xFF] ^ tt ); tt = Kdr[1]; result[ 4] = (byte)(Si[(t1 >>> 24) & 0xFF] ^ (tt >>> 24)); result[ 5] = (byte)(Si[(t0 >>> 16) & 0xFF] ^ (tt >>> 16)); result[ 6] = (byte)(Si[(t3 >>> 8) & 0xFF] ^ (tt >>> 8)); result[ 7] = (byte)(Si[ t2 & 0xFF] ^ tt ); tt = Kdr[2]; result[ 8] = (byte)(Si[(t2 >>> 24) & 0xFF] ^ (tt >>> 24)); result[ 9] = (byte)(Si[(t1 >>> 16) & 0xFF] ^ (tt >>> 16)); result[10] = (byte)(Si[(t0 >>> 8) & 0xFF] ^ (tt >>> 8)); result[11] = (byte)(Si[ t3 & 0xFF] ^ tt ); tt = Kdr[3]; result[12] = (byte)(Si[(t3 >>> 24) & 0xFF] ^ (tt >>> 24)); result[13] = (byte)(Si[(t2 >>> 16) & 0xFF] ^ (tt >>> 16)); result[14] = (byte)(Si[(t1 >>> 8) & 0xFF] ^ (tt >>> 8)); result[15] = (byte)(Si[ t0 & 0xFF] ^ tt ); if (RDEBUG && debuglevel > 6) { System.out.println("PT="+toString(result)); System.out.println(); } if (RDEBUG) trace(OUT, "blockDecrypt()"); } /** A basic symmetric encryption/decryption test. */ public static boolean self_test() { return self_test(BLOCK_SIZE); } // Rijndael own methods //........................................................................... /** @return The default length in bytes of the Algorithm input block. */ public static final int blockSize() { return BLOCK_SIZE; } /** * Expand a user-supplied key material into a session key. * * @param k The 128/192/256-bit user-key to use. * @param blockSize The block size in bytes of this Rijndael. * @exception InvalidKeyException If the key is invalid. */ //TODO: This method doesn't really need synchronization. The only reason //I can see for it to be synchronized is that it will consume 100% CPU (due to //heavy calculations) when called. Probably should be unsynchronized if we //want better support for dual+ CPU machines. /Iakin 2003-10-12 //Concur: the class has no fields which are not final, and does //not reference fields of any other classes. Control over how //many simultaneous makeKey invocations should be allowed is //a problem the callers should resolve among themselves. //It is a fact that allowing no more than one makeKey on any given //CPU will result in fewer cache misses. -- ejhuff 2003-10-12 public final static synchronized Object makeKey (byte[] k, int blockSize) throws InvalidKeyException { if (RDEBUG) trace(IN, "makeKey("+k+", "+blockSize+")"); if (k == null) throw new InvalidKeyException("Empty key"); if (!(k.length == 16 || k.length == 24 || k.length == 32)) throw new InvalidKeyException("Incorrect key length"); int ROUNDS = getRounds(k.length, blockSize); int BC = blockSize / 4; int[][] Ke = new int[ROUNDS + 1][BC]; // encryption round keys int[][] Kd = new int[ROUNDS + 1][BC]; // decryption round keys int ROUND_KEY_COUNT = (ROUNDS + 1) * BC; int KC = k.length / 4; int[] tk = new int[KC]; int i, j; // copy user material bytes into temporary ints for (i = 0, j = 0; i < KC; ) tk[i++] = (k[j++] & 0xFF) << 24 | (k[j++] & 0xFF) << 16 | (k[j++] & 0xFF) << 8 | (k[j++] & 0xFF); // copy values into round key arrays int t = 0; for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) { Ke[t / BC][t % BC] = tk[j]; Kd[ROUNDS - (t / BC)][t % BC] = tk[j]; } int tt, rconpointer = 0; while (t < ROUND_KEY_COUNT) { // extrapolate using phi (the round key evolution function) tt = tk[KC - 1]; tk[0] ^= (S[(tt >>> 16) & 0xFF] & 0xFF) << 24 ^ (S[(tt >>> 8) & 0xFF] & 0xFF) << 16 ^ (S[ tt & 0xFF] & 0xFF) << 8 ^ (S[(tt >>> 24) & 0xFF] & 0xFF) ^ (rcon[rconpointer++] & 0xFF) << 24; if (KC != 8) for (i = 1, j = 0; i < KC; ) { //tk[i++] ^= tk[j++]; // The above line replaced with the code below in order to work around // a bug in the kjc-1.4F java compiler (which has been reported). tk[i] ^= tk[j++]; i++; } else { for (i = 1, j = 0; i < KC / 2; ) { //tk[i++] ^= tk[j++]; // The above line replaced with the code below in order to work around // a bug in the kjc-1.4F java compiler (which has been reported). tk[i] ^= tk[j++]; i++; } tt = tk[KC / 2 - 1]; tk[KC / 2] ^= (S[ tt & 0xFF] & 0xFF) ^ (S[(tt >>> 8) & 0xFF] & 0xFF) << 8 ^ (S[(tt >>> 16) & 0xFF] & 0xFF) << 16 ^ (S[(tt >>> 24) & 0xFF] & 0xFF) << 24; for (j = KC / 2, i = j + 1; i < KC; ) { //tk[i++] ^= tk[j++]; // The above line replaced with the code below in order to work around // a bug in the kjc-1.4F java compiler (which has been reported). tk[i] ^= tk[j++]; i++; } } // copy values into round key arrays for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) { Ke[t / BC][t % BC] = tk[j]; Kd[ROUNDS - (t / BC)][t % BC] = tk[j]; } } for (int r = 1; r < ROUNDS; r++) // inverse MixColumn where needed for (j = 0; j < BC; j++) { tt = Kd[r][j]; Kd[r][j] = U1[(tt >>> 24) & 0xFF] ^ U2[(tt >>> 16) & 0xFF] ^ U3[(tt >>> 8) & 0xFF] ^ U4[ tt & 0xFF]; } // assemble the encryption (Ke) and decryption (Kd) round keys into // one sessionKey object Object[] sessionKey = new Object[] {Ke, Kd}; if (RDEBUG) trace(OUT, "makeKey()"); return sessionKey; } /** * Encrypt exactly one block of plaintext. * * @param in The plaintext. * @param result The buffer into which to write the resulting ciphertext. * @param inOffset Index of in from which to start considering data. * @param sessionKey The session key to use for encryption. * @param blockSize The block size in bytes of this Rijndael. */ public static final void blockEncrypt (byte[] in, byte[] result, int inOffset, Object sessionKey, int blockSize) { if (blockSize == BLOCK_SIZE) { blockEncrypt(in, result, inOffset, sessionKey); return; } if (RDEBUG) trace(IN, "blockEncrypt("+in+", "+inOffset+", "+sessionKey+", "+blockSize+")"); Object[] sKey = (Object[]) sessionKey; // extract encryption round keys int[][] Ke = (int[][]) sKey[0]; int BC = blockSize / 4; int ROUNDS = Ke.length - 1; int SC = BC == 4 ? 0 : (BC == 6 ? 1 : 2); int s1 = shifts[SC][1][0]; int s2 = shifts[SC][2][0]; int s3 = shifts[SC][3][0]; int[] a = new int[BC]; int[] t = new int[BC]; // temporary work array int i; int j = 0, tt; for (i = 0; i < BC; i++) // plaintext to ints + key t[i] = ((in[inOffset++] & 0xFF) << 24 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) ) ^ Ke[0][i]; for (int r = 1; r < ROUNDS; r++) { // apply round transforms for (i = 0; i < BC; i++) a[i] = (T1[(t[ i ] >>> 24) & 0xFF] ^ T2[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ T3[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ T4[ t[(i + s3) % BC] & 0xFF] ) ^ Ke[r][i]; System.arraycopy(a, 0, t, 0, BC); if (RDEBUG && debuglevel > 6) System.out.println("CT"+r+"="+toString(t)); } for (i = 0; i < BC; i++) { // last round is special tt = Ke[ROUNDS][i]; result[j++] = (byte)(S[(t[ i ] >>> 24) & 0xFF] ^ (tt >>> 24)); result[j++] = (byte)(S[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ (tt >>> 16)); result[j++] = (byte)(S[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ (tt >>> 8)); result[j++] = (byte)(S[ t[(i + s3) % BC] & 0xFF] ^ tt); } if (RDEBUG && debuglevel > 6) { System.out.println("CT="+toString(result)); System.out.println(); } if (RDEBUG) trace(OUT, "blockEncrypt()"); } /** * Decrypt exactly one block of ciphertext. * * @param in The ciphertext. * @param result The resulting ciphertext. * @param inOffset Index of in from which to start considering data. * @param sessionKey The session key to use for decryption. * @param blockSize The block size in bytes of this Rijndael. */ public static final void blockDecrypt (byte[] in, byte[] result, int inOffset, Object sessionKey, int blockSize) { if (blockSize == BLOCK_SIZE) { blockDecrypt(in, result, inOffset, sessionKey); return; } if (RDEBUG) trace(IN, "blockDecrypt("+in+", "+inOffset+", "+sessionKey+", "+blockSize+")"); Object[] sKey = (Object[]) sessionKey; // extract decryption round keys int[][] Kd = (int[][]) sKey[1]; int BC = blockSize / 4; int ROUNDS = Kd.length - 1; int SC = BC == 4 ? 0 : (BC == 6 ? 1 : 2); int s1 = shifts[SC][1][1]; int s2 = shifts[SC][2][1]; int s3 = shifts[SC][3][1]; int[] a = new int[BC]; int[] t = new int[BC]; // temporary work array int i; int j = 0, tt; for (i = 0; i < BC; i++) // ciphertext to ints + key t[i] = ((in[inOffset++] & 0xFF) << 24 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) ) ^ Kd[0][i]; for (int r = 1; r < ROUNDS; r++) { // apply round transforms for (i = 0; i < BC; i++) a[i] = (T5[(t[ i ] >>> 24) & 0xFF] ^ T6[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ T7[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ T8[ t[(i + s3) % BC] & 0xFF] ) ^ Kd[r][i]; System.arraycopy(a, 0, t, 0, BC); if (RDEBUG && debuglevel > 6) System.out.println("PT"+r+"="+toString(t)); } for (i = 0; i < BC; i++) { // last round is special tt = Kd[ROUNDS][i]; result[j++] = (byte)(Si[(t[ i ] >>> 24) & 0xFF] ^ (tt >>> 24)); result[j++] = (byte)(Si[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ (tt >>> 16)); result[j++] = (byte)(Si[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ (tt >>> 8)); result[j++] = (byte)(Si[ t[(i + s3) % BC] & 0xFF] ^ tt); } if (RDEBUG && debuglevel > 6) { System.out.println("PT="+toString(result)); System.out.println(); } if (RDEBUG) trace(OUT, "blockDecrypt()"); } /** A basic symmetric encryption/decryption test for a given key size. */ private static boolean self_test (int keysize) { if (RDEBUG) trace(IN, "self_test("+keysize+")"); boolean ok = false; try { byte[] kb = new byte[keysize]; byte[] pt = new byte[BLOCK_SIZE]; int i; for (i = 0; i < keysize; i++) kb[i] = (byte) i; for (i = 0; i < BLOCK_SIZE; i++) pt[i] = (byte) i; if (RDEBUG && debuglevel > 6) { System.out.println("=========="); System.out.println(); System.out.println("KEYSIZE="+(8*keysize)); System.out.println("KEY="+toString(kb)); System.out.println(); } Object key = makeKey(kb, BLOCK_SIZE); if (RDEBUG && debuglevel > 6) { System.out.println("Intermediate Ciphertext Values (Encryption)"); System.out.println(); System.out.println("PT="+toString(pt)); } byte[] ct = new byte[BLOCK_SIZE]; blockEncrypt(pt, ct, 0, key, BLOCK_SIZE); if (RDEBUG && debuglevel > 6) { System.out.println("Intermediate Plaintext Values (Decryption)"); System.out.println(); System.out.println("CT="+toString(ct)); } byte[] cpt = new byte[BLOCK_SIZE]; blockDecrypt(ct, cpt, 0, key, BLOCK_SIZE); ok = areEqual(pt, cpt); if (!ok) throw new RuntimeException("Symmetric operation failed"); } catch (Exception x) { if (RDEBUG && debuglevel > 0) { debug("Exception encountered during self-test: " + x.getMessage()); x.printStackTrace(); } } if (RDEBUG && debuglevel > 0) debug("Self-test OK? " + ok); if (RDEBUG) trace(OUT, "self_test()"); return ok; } /** * Return The number of rounds for a given Rijndael's key and block sizes. * * @param keySize The size of the user key material in bytes. * @param blockSize The desired block size in bytes. * @return The number of rounds for a given Rijndael's key and * block sizes. */ public static final int getRounds (int keySize, int blockSize) { switch (keySize) { case 16: return blockSize == 16 ? 10 : (blockSize == 24 ? 12 : 14); case 24: return blockSize != 32 ? 12 : 14; default: // 32 bytes = 256 bits return 14; } } // utility static methods (from cryptix.util.core ArrayUtil and Hex classes) //........................................................................... /** * Compares two byte arrays for equality. * * @return true if the arrays have identical contents */ private static final boolean areEqual (byte[] a, byte[] b) { int aLength = a.length; if (aLength != b.length) return false; for (int i = 0; i < aLength; i++) if (a[i] != b[i]) return false; return true; } /** * Returns a string of 2 hexadecimal digits (most significant * digit first) corresponding to the lowest 8 bits of n. */ private static final String byteToString (int n) { char[] buf = { HEX_DIGITS[(n >>> 4) & 0x0F], HEX_DIGITS[ n & 0x0F] }; return new String(buf); } /** * Returns a string of 8 hexadecimal digits (most significant * digit first) corresponding to the integer n, which is * treated as unsigned. */ private static final String intToString (int n) { char[] buf = new char[8]; for (int i = 7; i >= 0; i--) { buf[i] = HEX_DIGITS[n & 0x0F]; n >>>= 4; } return new String(buf); } /** * Returns a string of hexadecimal digits from a byte array. Each * byte is converted to 2 hex symbols. */ private static final String toString (byte[] ba) { int length = ba.length; char[] buf = new char[length * 2]; for (int i = 0, j = 0, k; i < length; ) { k = ba[i++]; buf[j++] = HEX_DIGITS[(k >>> 4) & 0x0F]; buf[j++] = HEX_DIGITS[ k & 0x0F]; } return new String(buf); } /** * Returns a string of hexadecimal digits from an integer array. Each * int is converted to 4 hex symbols. */ private static final String toString (int[] ia) { int length = ia.length; char[] buf = new char[length * 8]; for (int i = 0, j = 0, k; i < length; i++) { k = ia[i]; buf[j++] = HEX_DIGITS[(k >>> 28) & 0x0F]; buf[j++] = HEX_DIGITS[(k >>> 24) & 0x0F]; buf[j++] = HEX_DIGITS[(k >>> 20) & 0x0F]; buf[j++] = HEX_DIGITS[(k >>> 16) & 0x0F]; buf[j++] = HEX_DIGITS[(k >>> 12) & 0x0F]; buf[j++] = HEX_DIGITS[(k >>> 8) & 0x0F]; buf[j++] = HEX_DIGITS[(k >>> 4) & 0x0F]; buf[j++] = HEX_DIGITS[ k & 0x0F]; } return new String(buf); } // main(): use to generate the Intermediate Values KAT //........................................................................... public static void main (String[] args) { self_test(16); self_test(24); self_test(32); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy