com.genexus.util.Twofish_Algorithm Maven / Gradle / Ivy
Show all versions of gxandroid Show documentation
package com.genexus.util;
import java.io.PrintWriter;
import java.security.InvalidKeyException;
//...........................................................................
/**
* Twofish is an AES candidate algorithm. It is a balanced 128-bit Feistel
* cipher, consisting of 16 rounds. In each round, a 64-bit S-box value is
* computed from 64 bits of the block, and this value is xored into the other
* half of the block. The two half-blocks are then exchanged, and the next
* round begins. Before the first round, all input bits are xored with key-
* dependent "whitening" subkeys, and after the final round the output bits
* are xored with other key-dependent whitening subkeys; these subkeys are
* not used anywhere else in the algorithm.
*
* Twofish was submitted by Bruce Schneier, Doug Whiting, John Kelsey, Chris
* Hall and David Wagner.
*
* Reference:
* - TWOFISH2.C -- Optimized C API calls for TWOFISH AES submission,
* Version 1.00, April 1998, by Doug Whiting.
*
* Copyright © 1998
* Systemics Ltd on behalf of the
* Cryptix Development Team.
*
All rights reserved.
*
* $Revision: 1.1 $
* @author Raif S. Naffah
*/
public final class Twofish_Algorithm // implicit no-argument constructor
{
// Debugging methods and variables
//...........................................................................
static final String NAME = "Twofish_Algorithm";
static final boolean IN = true, OUT = false;
static final boolean DEBUG = Twofish_Properties.GLOBAL_DEBUG;
static final int debuglevel = DEBUG ? Twofish_Properties.getLevel(NAME) : 0;
static final PrintWriter err = DEBUG ? Twofish_Properties.getOutput() : null;
static final boolean TRACE = Twofish_Properties.isTraceable(NAME);
static void debug (String s) { if (err != null) err.println(">>> "+NAME+": "+s); }
static void trace (boolean in, String s) {
if (TRACE && err != null) err.println((in?"==> ":"<== ")+NAME+"."+s);
}
static void trace (String s) { if (TRACE && err != null) err.println("<=> "+NAME+"."+s); }
// Constants and variables
//...........................................................................
static final int BLOCK_SIZE = 16; // bytes in a data-block
private static final int ROUNDS = 16;
private static final int MAX_ROUNDS = 16; // max # rounds (for allocating subkeys)
/* Subkey array indices */
private static final int INPUT_WHITEN = 0;
private static final int OUTPUT_WHITEN = INPUT_WHITEN + BLOCK_SIZE/4;
private static final int ROUND_SUBKEYS = OUTPUT_WHITEN + BLOCK_SIZE/4; // 2*(# rounds)
private static final int TOTAL_SUBKEYS = ROUND_SUBKEYS + 2*MAX_ROUNDS;
private static final int SK_STEP = 0x02020202;
private static final int SK_BUMP = 0x01010101;
private static final int SK_ROTL = 9;
/** Fixed 8x8 permutation S-boxes */
private static final byte[][] P = new byte[][] {
{ // p0
(byte) 0xA9, (byte) 0x67, (byte) 0xB3, (byte) 0xE8,
(byte) 0x04, (byte) 0xFD, (byte) 0xA3, (byte) 0x76,
(byte) 0x9A, (byte) 0x92, (byte) 0x80, (byte) 0x78,
(byte) 0xE4, (byte) 0xDD, (byte) 0xD1, (byte) 0x38,
(byte) 0x0D, (byte) 0xC6, (byte) 0x35, (byte) 0x98,
(byte) 0x18, (byte) 0xF7, (byte) 0xEC, (byte) 0x6C,
(byte) 0x43, (byte) 0x75, (byte) 0x37, (byte) 0x26,
(byte) 0xFA, (byte) 0x13, (byte) 0x94, (byte) 0x48,
(byte) 0xF2, (byte) 0xD0, (byte) 0x8B, (byte) 0x30,
(byte) 0x84, (byte) 0x54, (byte) 0xDF, (byte) 0x23,
(byte) 0x19, (byte) 0x5B, (byte) 0x3D, (byte) 0x59,
(byte) 0xF3, (byte) 0xAE, (byte) 0xA2, (byte) 0x82,
(byte) 0x63, (byte) 0x01, (byte) 0x83, (byte) 0x2E,
(byte) 0xD9, (byte) 0x51, (byte) 0x9B, (byte) 0x7C,
(byte) 0xA6, (byte) 0xEB, (byte) 0xA5, (byte) 0xBE,
(byte) 0x16, (byte) 0x0C, (byte) 0xE3, (byte) 0x61,
(byte) 0xC0, (byte) 0x8C, (byte) 0x3A, (byte) 0xF5,
(byte) 0x73, (byte) 0x2C, (byte) 0x25, (byte) 0x0B,
(byte) 0xBB, (byte) 0x4E, (byte) 0x89, (byte) 0x6B,
(byte) 0x53, (byte) 0x6A, (byte) 0xB4, (byte) 0xF1,
(byte) 0xE1, (byte) 0xE6, (byte) 0xBD, (byte) 0x45,
(byte) 0xE2, (byte) 0xF4, (byte) 0xB6, (byte) 0x66,
(byte) 0xCC, (byte) 0x95, (byte) 0x03, (byte) 0x56,
(byte) 0xD4, (byte) 0x1C, (byte) 0x1E, (byte) 0xD7,
(byte) 0xFB, (byte) 0xC3, (byte) 0x8E, (byte) 0xB5,
(byte) 0xE9, (byte) 0xCF, (byte) 0xBF, (byte) 0xBA,
(byte) 0xEA, (byte) 0x77, (byte) 0x39, (byte) 0xAF,
(byte) 0x33, (byte) 0xC9, (byte) 0x62, (byte) 0x71,
(byte) 0x81, (byte) 0x79, (byte) 0x09, (byte) 0xAD,
(byte) 0x24, (byte) 0xCD, (byte) 0xF9, (byte) 0xD8,
(byte) 0xE5, (byte) 0xC5, (byte) 0xB9, (byte) 0x4D,
(byte) 0x44, (byte) 0x08, (byte) 0x86, (byte) 0xE7,
(byte) 0xA1, (byte) 0x1D, (byte) 0xAA, (byte) 0xED,
(byte) 0x06, (byte) 0x70, (byte) 0xB2, (byte) 0xD2,
(byte) 0x41, (byte) 0x7B, (byte) 0xA0, (byte) 0x11,
(byte) 0x31, (byte) 0xC2, (byte) 0x27, (byte) 0x90,
(byte) 0x20, (byte) 0xF6, (byte) 0x60, (byte) 0xFF,
(byte) 0x96, (byte) 0x5C, (byte) 0xB1, (byte) 0xAB,
(byte) 0x9E, (byte) 0x9C, (byte) 0x52, (byte) 0x1B,
(byte) 0x5F, (byte) 0x93, (byte) 0x0A, (byte) 0xEF,
(byte) 0x91, (byte) 0x85, (byte) 0x49, (byte) 0xEE,
(byte) 0x2D, (byte) 0x4F, (byte) 0x8F, (byte) 0x3B,
(byte) 0x47, (byte) 0x87, (byte) 0x6D, (byte) 0x46,
(byte) 0xD6, (byte) 0x3E, (byte) 0x69, (byte) 0x64,
(byte) 0x2A, (byte) 0xCE, (byte) 0xCB, (byte) 0x2F,
(byte) 0xFC, (byte) 0x97, (byte) 0x05, (byte) 0x7A,
(byte) 0xAC, (byte) 0x7F, (byte) 0xD5, (byte) 0x1A,
(byte) 0x4B, (byte) 0x0E, (byte) 0xA7, (byte) 0x5A,
(byte) 0x28, (byte) 0x14, (byte) 0x3F, (byte) 0x29,
(byte) 0x88, (byte) 0x3C, (byte) 0x4C, (byte) 0x02,
(byte) 0xB8, (byte) 0xDA, (byte) 0xB0, (byte) 0x17,
(byte) 0x55, (byte) 0x1F, (byte) 0x8A, (byte) 0x7D,
(byte) 0x57, (byte) 0xC7, (byte) 0x8D, (byte) 0x74,
(byte) 0xB7, (byte) 0xC4, (byte) 0x9F, (byte) 0x72,
(byte) 0x7E, (byte) 0x15, (byte) 0x22, (byte) 0x12,
(byte) 0x58, (byte) 0x07, (byte) 0x99, (byte) 0x34,
(byte) 0x6E, (byte) 0x50, (byte) 0xDE, (byte) 0x68,
(byte) 0x65, (byte) 0xBC, (byte) 0xDB, (byte) 0xF8,
(byte) 0xC8, (byte) 0xA8, (byte) 0x2B, (byte) 0x40,
(byte) 0xDC, (byte) 0xFE, (byte) 0x32, (byte) 0xA4,
(byte) 0xCA, (byte) 0x10, (byte) 0x21, (byte) 0xF0,
(byte) 0xD3, (byte) 0x5D, (byte) 0x0F, (byte) 0x00,
(byte) 0x6F, (byte) 0x9D, (byte) 0x36, (byte) 0x42,
(byte) 0x4A, (byte) 0x5E, (byte) 0xC1, (byte) 0xE0
},
{ // p1
(byte) 0x75, (byte) 0xF3, (byte) 0xC6, (byte) 0xF4,
(byte) 0xDB, (byte) 0x7B, (byte) 0xFB, (byte) 0xC8,
(byte) 0x4A, (byte) 0xD3, (byte) 0xE6, (byte) 0x6B,
(byte) 0x45, (byte) 0x7D, (byte) 0xE8, (byte) 0x4B,
(byte) 0xD6, (byte) 0x32, (byte) 0xD8, (byte) 0xFD,
(byte) 0x37, (byte) 0x71, (byte) 0xF1, (byte) 0xE1,
(byte) 0x30, (byte) 0x0F, (byte) 0xF8, (byte) 0x1B,
(byte) 0x87, (byte) 0xFA, (byte) 0x06, (byte) 0x3F,
(byte) 0x5E, (byte) 0xBA, (byte) 0xAE, (byte) 0x5B,
(byte) 0x8A, (byte) 0x00, (byte) 0xBC, (byte) 0x9D,
(byte) 0x6D, (byte) 0xC1, (byte) 0xB1, (byte) 0x0E,
(byte) 0x80, (byte) 0x5D, (byte) 0xD2, (byte) 0xD5,
(byte) 0xA0, (byte) 0x84, (byte) 0x07, (byte) 0x14,
(byte) 0xB5, (byte) 0x90, (byte) 0x2C, (byte) 0xA3,
(byte) 0xB2, (byte) 0x73, (byte) 0x4C, (byte) 0x54,
(byte) 0x92, (byte) 0x74, (byte) 0x36, (byte) 0x51,
(byte) 0x38, (byte) 0xB0, (byte) 0xBD, (byte) 0x5A,
(byte) 0xFC, (byte) 0x60, (byte) 0x62, (byte) 0x96,
(byte) 0x6C, (byte) 0x42, (byte) 0xF7, (byte) 0x10,
(byte) 0x7C, (byte) 0x28, (byte) 0x27, (byte) 0x8C,
(byte) 0x13, (byte) 0x95, (byte) 0x9C, (byte) 0xC7,
(byte) 0x24, (byte) 0x46, (byte) 0x3B, (byte) 0x70,
(byte) 0xCA, (byte) 0xE3, (byte) 0x85, (byte) 0xCB,
(byte) 0x11, (byte) 0xD0, (byte) 0x93, (byte) 0xB8,
(byte) 0xA6, (byte) 0x83, (byte) 0x20, (byte) 0xFF,
(byte) 0x9F, (byte) 0x77, (byte) 0xC3, (byte) 0xCC,
(byte) 0x03, (byte) 0x6F, (byte) 0x08, (byte) 0xBF,
(byte) 0x40, (byte) 0xE7, (byte) 0x2B, (byte) 0xE2,
(byte) 0x79, (byte) 0x0C, (byte) 0xAA, (byte) 0x82,
(byte) 0x41, (byte) 0x3A, (byte) 0xEA, (byte) 0xB9,
(byte) 0xE4, (byte) 0x9A, (byte) 0xA4, (byte) 0x97,
(byte) 0x7E, (byte) 0xDA, (byte) 0x7A, (byte) 0x17,
(byte) 0x66, (byte) 0x94, (byte) 0xA1, (byte) 0x1D,
(byte) 0x3D, (byte) 0xF0, (byte) 0xDE, (byte) 0xB3,
(byte) 0x0B, (byte) 0x72, (byte) 0xA7, (byte) 0x1C,
(byte) 0xEF, (byte) 0xD1, (byte) 0x53, (byte) 0x3E,
(byte) 0x8F, (byte) 0x33, (byte) 0x26, (byte) 0x5F,
(byte) 0xEC, (byte) 0x76, (byte) 0x2A, (byte) 0x49,
(byte) 0x81, (byte) 0x88, (byte) 0xEE, (byte) 0x21,
(byte) 0xC4, (byte) 0x1A, (byte) 0xEB, (byte) 0xD9,
(byte) 0xC5, (byte) 0x39, (byte) 0x99, (byte) 0xCD,
(byte) 0xAD, (byte) 0x31, (byte) 0x8B, (byte) 0x01,
(byte) 0x18, (byte) 0x23, (byte) 0xDD, (byte) 0x1F,
(byte) 0x4E, (byte) 0x2D, (byte) 0xF9, (byte) 0x48,
(byte) 0x4F, (byte) 0xF2, (byte) 0x65, (byte) 0x8E,
(byte) 0x78, (byte) 0x5C, (byte) 0x58, (byte) 0x19,
(byte) 0x8D, (byte) 0xE5, (byte) 0x98, (byte) 0x57,
(byte) 0x67, (byte) 0x7F, (byte) 0x05, (byte) 0x64,
(byte) 0xAF, (byte) 0x63, (byte) 0xB6, (byte) 0xFE,
(byte) 0xF5, (byte) 0xB7, (byte) 0x3C, (byte) 0xA5,
(byte) 0xCE, (byte) 0xE9, (byte) 0x68, (byte) 0x44,
(byte) 0xE0, (byte) 0x4D, (byte) 0x43, (byte) 0x69,
(byte) 0x29, (byte) 0x2E, (byte) 0xAC, (byte) 0x15,
(byte) 0x59, (byte) 0xA8, (byte) 0x0A, (byte) 0x9E,
(byte) 0x6E, (byte) 0x47, (byte) 0xDF, (byte) 0x34,
(byte) 0x35, (byte) 0x6A, (byte) 0xCF, (byte) 0xDC,
(byte) 0x22, (byte) 0xC9, (byte) 0xC0, (byte) 0x9B,
(byte) 0x89, (byte) 0xD4, (byte) 0xED, (byte) 0xAB,
(byte) 0x12, (byte) 0xA2, (byte) 0x0D, (byte) 0x52,
(byte) 0xBB, (byte) 0x02, (byte) 0x2F, (byte) 0xA9,
(byte) 0xD7, (byte) 0x61, (byte) 0x1E, (byte) 0xB4,
(byte) 0x50, (byte) 0x04, (byte) 0xF6, (byte) 0xC2,
(byte) 0x16, (byte) 0x25, (byte) 0x86, (byte) 0x56,
(byte) 0x55, (byte) 0x09, (byte) 0xBE, (byte) 0x91
}
};
/**
* Define the fixed p0/p1 permutations used in keyed S-box lookup.
* By changing the following constant definitions, the S-boxes will
* automatically get changed in the Twofish engine.
*/
private static final int P_00 = 1;
private static final int P_01 = 0;
private static final int P_02 = 0;
private static final int P_03 = P_01 ^ 1;
private static final int P_04 = 1;
private static final int P_10 = 0;
private static final int P_11 = 0;
private static final int P_12 = 1;
private static final int P_13 = P_11 ^ 1;
private static final int P_14 = 0;
private static final int P_20 = 1;
private static final int P_21 = 1;
private static final int P_22 = 0;
private static final int P_23 = P_21 ^ 1;
private static final int P_24 = 0;
private static final int P_30 = 0;
private static final int P_31 = 1;
private static final int P_32 = 1;
private static final int P_33 = P_31 ^ 1;
private static final int P_34 = 1;
/** Primitive polynomial for GF(256) */
private static final int GF256_FDBK = 0x169;
private static final int GF256_FDBK_2 = 0x169 / 2;
private static final int GF256_FDBK_4 = 0x169 / 4;
/** MDS matrix */
private static final int[][] MDS = new int[4][256]; // blank final
private static final int RS_GF_FDBK = 0x14D; // field generator
/** data for hexadecimal visualisation. */
private static final char[] HEX_DIGITS = {
'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F'
};
// Static code - to intialise the MDS matrix
//...........................................................................
static {
long time = System.currentTimeMillis();
if (DEBUG && debuglevel > 6) {
System.out.println("Algorithm Name: "+Twofish_Properties.FULL_NAME);
System.out.println("Electronic Codebook (ECB) Mode");
System.out.println();
}
//
// precompute the MDS matrix
//
int[] m1 = new int[2];
int[] mX = new int[2];
int[] mY = new int[2];
int i, j;
for (i = 0; i < 256; i++) {
j = P[0][i] & 0xFF; // compute all the matrix elements
m1[0] = j;
mX[0] = Mx_X( j ) & 0xFF;
mY[0] = Mx_Y( j ) & 0xFF;
j = P[1][i] & 0xFF;
m1[1] = j;
mX[1] = Mx_X( j ) & 0xFF;
mY[1] = Mx_Y( j ) & 0xFF;
MDS[0][i] = m1[P_00] << 0 | // fill matrix w/ above elements
mX[P_00] << 8 |
mY[P_00] << 16 |
mY[P_00] << 24;
MDS[1][i] = mY[P_10] << 0 |
mY[P_10] << 8 |
mX[P_10] << 16 |
m1[P_10] << 24;
MDS[2][i] = mX[P_20] << 0 |
mY[P_20] << 8 |
m1[P_20] << 16 |
mY[P_20] << 24;
MDS[3][i] = mX[P_30] << 0 |
m1[P_30] << 8 |
mY[P_30] << 16 |
mX[P_30] << 24;
}
time = System.currentTimeMillis() - time;
if (DEBUG && debuglevel > 8) {
System.out.println("==========");
System.out.println();
System.out.println("Static Data");
System.out.println();
System.out.println("MDS[0][]:"); for(i=0;i<64;i++) { for(j=0;j<4;j++) System.out.print("0x"+intToString(MDS[0][i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("MDS[1][]:"); for(i=0;i<64;i++) { for(j=0;j<4;j++) System.out.print("0x"+intToString(MDS[1][i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("MDS[2][]:"); for(i=0;i<64;i++) { for(j=0;j<4;j++) System.out.print("0x"+intToString(MDS[2][i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("MDS[3][]:"); for(i=0;i<64;i++) { for(j=0;j<4;j++) System.out.print("0x"+intToString(MDS[3][i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("Total initialization time: "+time+" ms.");
System.out.println();
}
}
private static final int LFSR1( int x ) {
return (x >> 1) ^
((x & 0x01) != 0 ? GF256_FDBK_2 : 0);
}
private static final int LFSR2( int x ) {
return (x >> 2) ^
((x & 0x02) != 0 ? GF256_FDBK_2 : 0) ^
((x & 0x01) != 0 ? GF256_FDBK_4 : 0);
}
private static final int Mx_1( int x ) { return x; }
private static final int Mx_X( int x ) { return x ^ LFSR2(x); } // 5B
private static final int Mx_Y( int x ) { return x ^ LFSR1(x) ^ LFSR2(x); } // EF
// Basic API methods
//...........................................................................
/**
* Expand a user-supplied key material into a session key.
*
* @param key The 64/128/192/256-bit user-key to use.
* @return This cipher's round keys.
* @exception InvalidKeyException If the key is invalid.
*/
public static synchronized Object makeKey (byte[] k)
throws InvalidKeyException {
if (DEBUG) trace(IN, "makeKey("+k+")");
if (k == null)
throw new InvalidKeyException("Empty key");
int length = k.length;
if (!(length == 8 || length == 16 || length == 24 || length == 32))
throw new InvalidKeyException("Incorrect key length");
if (DEBUG && debuglevel > 7) {
System.out.println("Intermediate Session Key Values");
System.out.println();
System.out.println("Raw="+toString(k));
System.out.println();
}
int k64Cnt = length / 8;
int subkeyCnt = ROUND_SUBKEYS + 2*ROUNDS;
int[] k32e = new int[4]; // even 32-bit entities
int[] k32o = new int[4]; // odd 32-bit entities
int[] sBoxKey = new int[4];
//
// split user key material into even and odd 32-bit entities and
// compute S-box keys using (12, 8) Reed-Solomon code over GF(256)
//
int i, j, offset = 0;
for (i = 0, j = k64Cnt-1; i < 4 && offset < length; i++, j--) {
k32e[i] = (k[offset++] & 0xFF) |
(k[offset++] & 0xFF) << 8 |
(k[offset++] & 0xFF) << 16 |
(k[offset++] & 0xFF) << 24;
k32o[i] = (k[offset++] & 0xFF) |
(k[offset++] & 0xFF) << 8 |
(k[offset++] & 0xFF) << 16 |
(k[offset++] & 0xFF) << 24;
sBoxKey[j] = RS_MDS_Encode( k32e[i], k32o[i] ); // reverse order
}
// compute the round decryption subkeys for PHT. these same subkeys
// will be used in encryption but will be applied in reverse order.
int q, A, B;
int[] subKeys = new int[subkeyCnt];
for (i = q = 0; i < subkeyCnt/2; i++, q += SK_STEP) {
A = F32( k64Cnt, q , k32e ); // A uses even key entities
B = F32( k64Cnt, q+SK_BUMP, k32o ); // B uses odd key entities
B = B << 8 | B >>> 24;
A += B;
subKeys[2*i ] = A; // combine with a PHT
A += B;
subKeys[2*i + 1] = A << SK_ROTL | A >>> (32-SK_ROTL);
}
//
// fully expand the table for speed
//
int k0 = sBoxKey[0];
int k1 = sBoxKey[1];
int k2 = sBoxKey[2];
int k3 = sBoxKey[3];
int b0, b1, b2, b3;
int[] sBox = new int[4 * 256];
for (i = 0; i < 256; i++) {
b0 = b1 = b2 = b3 = i;
switch (k64Cnt & 3) {
case 1:
sBox[ 2*i ] = MDS[0][(P[P_01][b0] & 0xFF) ^ b0(k0)];
sBox[ 2*i+1] = MDS[1][(P[P_11][b1] & 0xFF) ^ b1(k0)];
sBox[0x200+2*i ] = MDS[2][(P[P_21][b2] & 0xFF) ^ b2(k0)];
sBox[0x200+2*i+1] = MDS[3][(P[P_31][b3] & 0xFF) ^ b3(k0)];
break;
case 0: // same as 4
b0 = (P[P_04][b0] & 0xFF) ^ b0(k3);
b1 = (P[P_14][b1] & 0xFF) ^ b1(k3);
b2 = (P[P_24][b2] & 0xFF) ^ b2(k3);
b3 = (P[P_34][b3] & 0xFF) ^ b3(k3);
case 3:
b0 = (P[P_03][b0] & 0xFF) ^ b0(k2);
b1 = (P[P_13][b1] & 0xFF) ^ b1(k2);
b2 = (P[P_23][b2] & 0xFF) ^ b2(k2);
b3 = (P[P_33][b3] & 0xFF) ^ b3(k2);
case 2: // 128-bit keys
sBox[ 2*i ] = MDS[0][(P[P_01][(P[P_02][b0] & 0xFF) ^ b0(k1)] & 0xFF) ^ b0(k0)];
sBox[ 2*i+1] = MDS[1][(P[P_11][(P[P_12][b1] & 0xFF) ^ b1(k1)] & 0xFF) ^ b1(k0)];
sBox[0x200+2*i ] = MDS[2][(P[P_21][(P[P_22][b2] & 0xFF) ^ b2(k1)] & 0xFF) ^ b2(k0)];
sBox[0x200+2*i+1] = MDS[3][(P[P_31][(P[P_32][b3] & 0xFF) ^ b3(k1)] & 0xFF) ^ b3(k0)];
}
}
Object sessionKey = new Object[] { sBox, subKeys };
if (DEBUG && debuglevel > 7) {
System.out.println("S-box[]:");
for(i=0;i<64;i++) { for(j=0;j<4;j++) System.out.print("0x"+intToString(sBox[i*4+j])+", "); System.out.println();}
System.out.println();
for(i=0;i<64;i++) { for(j=0;j<4;j++) System.out.print("0x"+intToString(sBox[256+i*4+j])+", "); System.out.println();}
System.out.println();
for(i=0;i<64;i++) { for(j=0;j<4;j++) System.out.print("0x"+intToString(sBox[512+i*4+j])+", "); System.out.println();}
System.out.println();
for(i=0;i<64;i++) { for(j=0;j<4;j++) System.out.print("0x"+intToString(sBox[768+i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("User (odd, even) keys --> S-Box keys:");
for(i=0;i 0x"+intToString(sBoxKey[k64Cnt-1-i])); }
System.out.println();
System.out.println("Round keys:");
for(i=0;i 6) System.out.println("PT="+toString(in, inOffset, BLOCK_SIZE));
int x0 = (in[inOffset++] & 0xFF) |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 24;
int x1 = (in[inOffset++] & 0xFF) |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 24;
int x2 = (in[inOffset++] & 0xFF) |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 24;
int x3 = (in[inOffset++] & 0xFF) |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 24;
x0 ^= sKey[INPUT_WHITEN ];
x1 ^= sKey[INPUT_WHITEN + 1];
x2 ^= sKey[INPUT_WHITEN + 2];
x3 ^= sKey[INPUT_WHITEN + 3];
if (DEBUG && debuglevel > 6) System.out.println("PTw="+intToString(x0)+intToString(x1)+intToString(x2)+intToString(x3));
int t0, t1;
int k = ROUND_SUBKEYS;
for (int R = 0; R < ROUNDS; R += 2) {
t0 = Fe32( sBox, x0, 0 );
t1 = Fe32( sBox, x1, 3 );
x2 ^= t0 + t1 + sKey[k++];
x2 = x2 >>> 1 | x2 << 31;
x3 = x3 << 1 | x3 >>> 31;
x3 ^= t0 + 2*t1 + sKey[k++];
if (DEBUG && debuglevel > 6) System.out.println("CT"+(R)+"="+intToString(x0)+intToString(x1)+intToString(x2)+intToString(x3));
t0 = Fe32( sBox, x2, 0 );
t1 = Fe32( sBox, x3, 3 );
x0 ^= t0 + t1 + sKey[k++];
x0 = x0 >>> 1 | x0 << 31;
x1 = x1 << 1 | x1 >>> 31;
x1 ^= t0 + 2*t1 + sKey[k++];
if (DEBUG && debuglevel > 6) System.out.println("CT"+(R+1)+"="+intToString(x0)+intToString(x1)+intToString(x2)+intToString(x3));
}
x2 ^= sKey[OUTPUT_WHITEN ];
x3 ^= sKey[OUTPUT_WHITEN + 1];
x0 ^= sKey[OUTPUT_WHITEN + 2];
x1 ^= sKey[OUTPUT_WHITEN + 3];
if (DEBUG && debuglevel > 6) System.out.println("CTw="+intToString(x0)+intToString(x1)+intToString(x2)+intToString(x3));
byte[] result = new byte[] {
(byte) x2, (byte)(x2 >>> 8), (byte)(x2 >>> 16), (byte)(x2 >>> 24),
(byte) x3, (byte)(x3 >>> 8), (byte)(x3 >>> 16), (byte)(x3 >>> 24),
(byte) x0, (byte)(x0 >>> 8), (byte)(x0 >>> 16), (byte)(x0 >>> 24),
(byte) x1, (byte)(x1 >>> 8), (byte)(x1 >>> 16), (byte)(x1 >>> 24),
};
if (DEBUG && debuglevel > 6) {
System.out.println("CT="+toString(result));
System.out.println();
}
if (DEBUG) trace(OUT, "blockEncrypt()");
return result;
}
/**
* Decrypt exactly one block of ciphertext.
*
* @param in The ciphertext.
* @param inOffset Index of in from which to start considering data.
* @param sessionKey The session key to use for decryption.
* @return The plaintext generated from a ciphertext using the session key.
*/
public static byte[] blockDecrypt (byte[] in, int inOffset, Object sessionKey) {
if (DEBUG) trace(IN, "blockDecrypt("+in+", "+inOffset+", "+sessionKey+")");
Object[] sk = (Object[]) sessionKey; // extract S-box and session key
int[] sBox = (int[]) sk[0];
int[] sKey = (int[]) sk[1];
if (DEBUG && debuglevel > 6) System.out.println("CT="+toString(in, inOffset, BLOCK_SIZE));
int x2 = (in[inOffset++] & 0xFF) |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 24;
int x3 = (in[inOffset++] & 0xFF) |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 24;
int x0 = (in[inOffset++] & 0xFF) |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 24;
int x1 = (in[inOffset++] & 0xFF) |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 24;
x2 ^= sKey[OUTPUT_WHITEN ];
x3 ^= sKey[OUTPUT_WHITEN + 1];
x0 ^= sKey[OUTPUT_WHITEN + 2];
x1 ^= sKey[OUTPUT_WHITEN + 3];
if (DEBUG && debuglevel > 6) System.out.println("CTw="+intToString(x2)+intToString(x3)+intToString(x0)+intToString(x1));
int k = ROUND_SUBKEYS + 2*ROUNDS - 1;
int t0, t1;
for (int R = 0; R < ROUNDS; R += 2) {
t0 = Fe32( sBox, x2, 0 );
t1 = Fe32( sBox, x3, 3 );
x1 ^= t0 + 2*t1 + sKey[k--];
x1 = x1 >>> 1 | x1 << 31;
x0 = x0 << 1 | x0 >>> 31;
x0 ^= t0 + t1 + sKey[k--];
if (DEBUG && debuglevel > 6) System.out.println("PT"+(ROUNDS-R)+"="+intToString(x2)+intToString(x3)+intToString(x0)+intToString(x1));
t0 = Fe32( sBox, x0, 0 );
t1 = Fe32( sBox, x1, 3 );
x3 ^= t0 + 2*t1 + sKey[k--];
x3 = x3 >>> 1 | x3 << 31;
x2 = x2 << 1 | x2 >>> 31;
x2 ^= t0 + t1 + sKey[k--];
if (DEBUG && debuglevel > 6) System.out.println("PT"+(ROUNDS-R-1)+"="+intToString(x2)+intToString(x3)+intToString(x0)+intToString(x1));
}
x0 ^= sKey[INPUT_WHITEN ];
x1 ^= sKey[INPUT_WHITEN + 1];
x2 ^= sKey[INPUT_WHITEN + 2];
x3 ^= sKey[INPUT_WHITEN + 3];
if (DEBUG && debuglevel > 6) System.out.println("PTw="+intToString(x2)+intToString(x3)+intToString(x0)+intToString(x1));
byte[] result = new byte[] {
(byte) x0, (byte)(x0 >>> 8), (byte)(x0 >>> 16), (byte)(x0 >>> 24),
(byte) x1, (byte)(x1 >>> 8), (byte)(x1 >>> 16), (byte)(x1 >>> 24),
(byte) x2, (byte)(x2 >>> 8), (byte)(x2 >>> 16), (byte)(x2 >>> 24),
(byte) x3, (byte)(x3 >>> 8), (byte)(x3 >>> 16), (byte)(x3 >>> 24),
};
if (DEBUG && debuglevel > 6) {
System.out.println("PT="+toString(result));
System.out.println();
}
if (DEBUG) trace(OUT, "blockDecrypt()");
return result;
}
/** A basic symmetric encryption/decryption test. */
public static boolean self_test() { return self_test(BLOCK_SIZE); }
// own methods
//...........................................................................
private static final int b0( int x ) { return x & 0xFF; }
private static final int b1( int x ) { return (x >>> 8) & 0xFF; }
private static final int b2( int x ) { return (x >>> 16) & 0xFF; }
private static final int b3( int x ) { return (x >>> 24) & 0xFF; }
/**
* Use (12, 8) Reed-Solomon code over GF(256) to produce a key S-box
* 32-bit entity from two key material 32-bit entities.
*
* @param k0 1st 32-bit entity.
* @param k1 2nd 32-bit entity.
* @return Remainder polynomial generated using RS code
*/
private static final int RS_MDS_Encode( int k0, int k1) {
int r = k1;
for (int i = 0; i < 4; i++) // shift 1 byte at a time
r = RS_rem( r );
r ^= k0;
for (int i = 0; i < 4; i++)
r = RS_rem( r );
return r;
}
/*
* Reed-Solomon code parameters: (12, 8) reversible code:
*
* g(x) = x**4 + (a + 1/a) x**3 + a x**2 + (a + 1/a) x + 1
*
* where a = primitive root of field generator 0x14D
*/
private static final int RS_rem( int x ) {
int b = (x >>> 24) & 0xFF;
int g2 = ((b << 1) ^ ( (b & 0x80) != 0 ? RS_GF_FDBK : 0 )) & 0xFF;
int g3 = (b >>> 1) ^ ( (b & 0x01) != 0 ? (RS_GF_FDBK >>> 1) : 0 ) ^ g2 ;
int result = (x << 8) ^ (g3 << 24) ^ (g2 << 16) ^ (g3 << 8) ^ b;
return result;
}
private static final int F32( int k64Cnt, int x, int[] k32 ) {
int b0 = b0(x);
int b1 = b1(x);
int b2 = b2(x);
int b3 = b3(x);
int k0 = k32[0];
int k1 = k32[1];
int k2 = k32[2];
int k3 = k32[3];
int result = 0;
switch (k64Cnt & 3) {
case 1:
result =
MDS[0][(P[P_01][b0] & 0xFF) ^ b0(k0)] ^
MDS[1][(P[P_11][b1] & 0xFF) ^ b1(k0)] ^
MDS[2][(P[P_21][b2] & 0xFF) ^ b2(k0)] ^
MDS[3][(P[P_31][b3] & 0xFF) ^ b3(k0)];
break;
case 0: // same as 4
b0 = (P[P_04][b0] & 0xFF) ^ b0(k3);
b1 = (P[P_14][b1] & 0xFF) ^ b1(k3);
b2 = (P[P_24][b2] & 0xFF) ^ b2(k3);
b3 = (P[P_34][b3] & 0xFF) ^ b3(k3);
case 3:
b0 = (P[P_03][b0] & 0xFF) ^ b0(k2);
b1 = (P[P_13][b1] & 0xFF) ^ b1(k2);
b2 = (P[P_23][b2] & 0xFF) ^ b2(k2);
b3 = (P[P_33][b3] & 0xFF) ^ b3(k2);
case 2: // 128-bit keys (optimize for this case)
result =
MDS[0][(P[P_01][(P[P_02][b0] & 0xFF) ^ b0(k1)] & 0xFF) ^ b0(k0)] ^
MDS[1][(P[P_11][(P[P_12][b1] & 0xFF) ^ b1(k1)] & 0xFF) ^ b1(k0)] ^
MDS[2][(P[P_21][(P[P_22][b2] & 0xFF) ^ b2(k1)] & 0xFF) ^ b2(k0)] ^
MDS[3][(P[P_31][(P[P_32][b3] & 0xFF) ^ b3(k1)] & 0xFF) ^ b3(k0)];
break;
}
return result;
}
private static final int Fe32( int[] sBox, int x, int R ) {
return sBox[ 2*_b(x, R ) ] ^
sBox[ 2*_b(x, R+1) + 1] ^
sBox[0x200 + 2*_b(x, R+2) ] ^
sBox[0x200 + 2*_b(x, R+3) + 1];
}
private static final int _b( int x, int N) {
int result = 0;
switch (N%4) {
case 0: result = b0(x); break;
case 1: result = b1(x); break;
case 2: result = b2(x); break;
case 3: result = b3(x); break;
}
return result;
}
/** @return The length in bytes of the Algorithm input block. */
public static int blockSize() { return BLOCK_SIZE; }
/** A basic symmetric encryption/decryption test for a given key size. */
private static boolean self_test (int keysize) {
if (DEBUG) trace(IN, "self_test("+keysize+")");
boolean ok = false;
try {
byte[] kb = new byte[keysize];
byte[] pt = new byte[BLOCK_SIZE];
int i;
for (i = 0; i < keysize; i++)
kb[i] = (byte) i;
for (i = 0; i < BLOCK_SIZE; i++)
pt[i] = (byte) i;
if (DEBUG && debuglevel > 6) {
System.out.println("==========");
System.out.println();
System.out.println("KEYSIZE="+(8*keysize));
System.out.println("KEY="+toString(kb));
System.out.println();
}
Object key = makeKey(kb);
if (DEBUG && debuglevel > 6) {
System.out.println("Intermediate Ciphertext Values (Encryption)");
System.out.println();
}
byte[] ct = blockEncrypt(pt, 0, key);
if (DEBUG && debuglevel > 6) {
System.out.println("Intermediate Plaintext Values (Decryption)");
System.out.println();
}
byte[] cpt = blockDecrypt(ct, 0, key);
ok = areEqual(pt, cpt);
if (!ok)
throw new RuntimeException("Symmetric operation failed");
} catch (Exception x) {
if (DEBUG && debuglevel > 0) {
debug("Exception encountered during self-test: " + x.getMessage());
x.printStackTrace();
}
}
if (DEBUG && debuglevel > 0) debug("Self-test OK? " + ok);
if (DEBUG) trace(OUT, "self_test()");
return ok;
}
// utility static methods (from cryptix.util.core ArrayUtil and Hex classes)
//...........................................................................
/** @return True iff the arrays have identical contents. */
private static boolean areEqual (byte[] a, byte[] b) {
int aLength = a.length;
if (aLength != b.length)
return false;
for (int i = 0; i < aLength; i++)
if (a[i] != b[i])
return false;
return true;
}
/**
* Returns a string of 8 hexadecimal digits (most significant
* digit first) corresponding to the integer n, which is
* treated as unsigned.
*/
private static String intToString (int n) {
char[] buf = new char[8];
for (int i = 7; i >= 0; i--) {
buf[i] = HEX_DIGITS[n & 0x0F];
n >>>= 4;
}
return new String(buf);
}
/**
* Returns a string of hexadecimal digits from a byte array. Each
* byte is converted to 2 hex symbols.
*/
private static String toString (byte[] ba) {
return toString(ba, 0, ba.length);
}
private static String toString (byte[] ba, int offset, int length) {
char[] buf = new char[length * 2];
for (int i = offset, j = 0, k; i < offset+length; ) {
k = ba[i++];
buf[j++] = HEX_DIGITS[(k >>> 4) & 0x0F];
buf[j++] = HEX_DIGITS[ k & 0x0F];
}
return new String(buf);
}
// main(): use to generate the Intermediate Values KAT
//...........................................................................
public static void main (String[] args) {
self_test(16);
self_test(24);
self_test(32);
}
}