com.genexus.util.Rijndael_Algorithm Maven / Gradle / Ivy
Show all versions of gxclassR Show documentation
/*
* Copyright (c) 1997, 1998 Systemics Ltd on behalf of
* the Cryptix Development Team. All rights reserved.
*/
package com.genexus.util;
import java.io.PrintWriter;
import java.security.InvalidKeyException;
//...........................................................................
/**
* Rijndael --pronounced Reindaal-- is a variable block-size (128-, 192- and
* 256-bit), variable key-size (128-, 192- and 256-bit) symmetric cipher.
*
* Rijndael was written by Vincent
* Rijmen and Joan Daemen.
*
* Portions of this code are Copyright © 1997, 1998
* Systemics Ltd on behalf of the
* Cryptix Development Team.
*
All rights reserved.
*
* @author Raif S. Naffah
* @author Paulo S. L. M. Barreto
*
* License is apparently available from http://www.cryptix.org/docs/license.html
*/
public final class Rijndael_Algorithm // implicit no-argument constructor
{
// Debugging methods and variables
//...........................................................................
static final String NAME = "Rijndael_Algorithm";
static final boolean IN = true, OUT = false;
static final boolean RDEBUG = Rijndael_Properties.GLOBAL_DEBUG;
static final int debuglevel = RDEBUG ? Rijndael_Properties.getLevel(NAME) : 0;
// static final PrintWriter err = RDEBUG ? Rijndael_Properties.getOutput() : null;
static final PrintWriter err = null;
static final boolean TRACE = Rijndael_Properties.isTraceable(NAME);
static void debug (String s)
{
if (err != null) {
err.println(">>> "+NAME+": "+s);
err.println(">>> "+NAME+": null");
}
}
static void trace (boolean in, String s) {
if (TRACE && err != null) err.println((in?"==> ":"<== ")+NAME+"."+s);
}
static void trace (String s) { if (TRACE && err != null) err.println("<=> "+NAME+"."+s); }
// Constants and variables
//...........................................................................
public static final int BLOCK_SIZE = 16; // default block size in bytes
static final int[] alog = new int[256];
static final int[] log = new int[256];
static final byte[] S = new byte[256];
static final byte[] Si = new byte[256];
static final int[] T1 = new int[256];
static final int[] T2 = new int[256];
static final int[] T3 = new int[256];
static final int[] T4 = new int[256];
static final int[] T5 = new int[256];
static final int[] T6 = new int[256];
static final int[] T7 = new int[256];
static final int[] T8 = new int[256];
static final int[] U1 = new int[256];
static final int[] U2 = new int[256];
static final int[] U3 = new int[256];
static final int[] U4 = new int[256];
static final byte[] rcon = new byte[30];
static final int[][][] shifts = new int[][][] {
{ {0, 0}, {1, 3}, {2, 2}, {3, 1} },
{ {0, 0}, {1, 5}, {2, 4}, {3, 3} },
{ {0, 0}, {1, 7}, {3, 5}, {4, 4} }
};
private static final char[] HEX_DIGITS = {
'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F'
};
// Static code - to intialise S-boxes and T-boxes
//...........................................................................
static {
long time = System.currentTimeMillis();
if (RDEBUG && debuglevel > 6) {
System.out.println("Algorithm Name: "+Rijndael_Properties.FULL_NAME);
System.out.println("Electronic Codebook (ECB) Mode");
System.out.println();
}
int ROOT = 0x11B;
int i, j = 0;
//
// produce log and alog tables, needed for multiplying in the
// field GF(2^m) (generator = 3)
//
generateLogAndAlogTables(ROOT);
generateSBoxes();
//
// T-boxes
//
byte[][] G = new byte[][] {
{2, 1, 1, 3},
{3, 2, 1, 1},
{1, 3, 2, 1},
{1, 1, 3, 2}
};
byte[][] iG = generateInvertedGMatrix(G);
generateTBoxes(G, iG);
//
// round constants
//
rcon[0] = 1;
int r = 1;
for (int t = 1; t < 30; ) rcon[t++] = (byte)(r = mul(2, r));
time = System.currentTimeMillis() - time;
if (RDEBUG && debuglevel > 8) {
System.out.println("==========");
System.out.println();
System.out.println("Static Data");
System.out.println();
System.out.println("S[]:"); for(i=0;i<16;i++) { for(j=0;j<16;j++) System.out.print("0x"+byteToString(S[i*16+j])+", "); System.out.println();}
System.out.println();
System.out.println("Si[]:"); for(i=0;i<16;i++) { for(j=0;j<16;j++) System.out.print("0x"+byteToString(Si[i*16+j])+", "); System.out.println();}
System.out.println();
System.out.println("iG[]:"); for(i=0;i<4;i++){for(j=0;j<4;j++) System.out.print("0x"+byteToString(iG[i][j])+", "); System.out.println();}
System.out.println();
System.out.println("T1[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T1[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("T2[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T2[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("T3[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T3[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("T4[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T4[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("T5[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T5[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("T6[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T6[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("T7[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T7[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("T8[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T8[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("U1[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(U1[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("U2[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(U2[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("U3[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(U3[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("U4[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(U4[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("rcon[]:"); for(i=0;i<5;i++){for(j=0;j<6;j++) System.out.print("0x"+byteToString(rcon[i*6+j])+", "); System.out.println();}
System.out.println();
System.out.println("Total initialization time: "+time+" ms.");
System.out.println();
}
}
private static void generateLogAndAlogTables(int ROOT) {
alog[0] = 1;
for (int i = 1; i < 256; i++) {
int j = (alog[i-1] << 1) ^ alog[i-1];
if ((j & 0x100) != 0) j ^= ROOT;
alog[i] = j;
}
for (int i = 1; i < 255; i++) log[alog[i]] = i;
}
private static void generateSBoxes() {
byte[][] A = new byte[][] {
{1, 1, 1, 1, 1, 0, 0, 0},
{0, 1, 1, 1, 1, 1, 0, 0},
{0, 0, 1, 1, 1, 1, 1, 0},
{0, 0, 0, 1, 1, 1, 1, 1},
{1, 0, 0, 0, 1, 1, 1, 1},
{1, 1, 0, 0, 0, 1, 1, 1},
{1, 1, 1, 0, 0, 0, 1, 1},
{1, 1, 1, 1, 0, 0, 0, 1}
};
byte[] B = new byte[] { 0, 1, 1, 0, 0, 0, 1, 1};
//
// substitution box based on F^{-1}(x)
//
byte[][] box = new byte[256][8];
box[1][7] = 1;
for (int i = 2; i < 256; i++) {
int j = alog[255 - log[i]];
for (int t = 0; t < 8; t++)
box[i][t] = (byte)((j >>> (7 - t)) & 0x01);
}
//
// affine transform: box[i] <- B + A*box[i]
//
byte[][] cox = new byte[256][8];
for (int i = 0; i < 256; i++)
for (int t = 0; t < 8; t++) {
cox[i][t] = B[t];
for (int j = 0; j < 8; j++)
cox[i][t] ^= A[t][j] * box[i][j];
}
//
// S-boxes and inverse S-boxes
//
for (int i = 0; i < 256; i++) {
S[i] = (byte)(cox[i][0] << 7);
for (int t = 1; t < 8; t++)
S[i] ^= cox[i][t] << (7-t);
Si[S[i] & 0xFF] = (byte) i;
}
}
private static byte[][] generateInvertedGMatrix(byte[][] gMatrix) {
byte[][] AA = new byte[4][8];
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) AA[i][j] = gMatrix[i][j];
AA[i][i+4] = 1;
}
byte pivot, tmp;
byte[][] iG = new byte[4][4];
for (int i = 0; i < 4; i++) {
pivot = AA[i][i];
if (pivot == 0) {
int t = i + 1;
while ((AA[t][i] == 0) && (t < 4))
t++;
if (t == 4)
throw new RuntimeException("G matrix is not invertible");
else {
for (int j = 0; j < 8; j++) {
tmp = AA[i][j];
AA[i][j] = AA[t][j];
AA[t][j] = tmp;
}
pivot = AA[i][i];
}
}
for (int j = 0; j < 8; j++)
if (AA[i][j] != 0)
AA[i][j] = (byte)
alog[(255 + log[AA[i][j] & 0xFF] - log[pivot & 0xFF]) % 255];
for (int t = 0; t < 4; t++)
if (i != t) {
for (int j = i+1; j < 8; j++)
AA[t][j] ^= mul(AA[i][j], AA[t][i]);
AA[t][i] = 0;
}
}
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++) iG[i][j] = AA[i][j + 4];
return iG;
}
private static void generateTBoxes(byte[][] g, byte[][] iG) {
for (int t = 0; t < 256; t++) {
int s = S[t];
T1[t] = mul4(s, g[0]);
T2[t] = mul4(s, g[1]);
T3[t] = mul4(s, g[2]);
T4[t] = mul4(s, g[3]);
s = Si[t];
T5[t] = mul4(s, iG[0]);
T6[t] = mul4(s, iG[1]);
T7[t] = mul4(s, iG[2]);
T8[t] = mul4(s, iG[3]);
U1[t] = mul4(t, iG[0]);
U2[t] = mul4(t, iG[1]);
U3[t] = mul4(t, iG[2]);
U4[t] = mul4(t, iG[3]);
}
}
// multiply two elements of GF(2^m)
static final int mul (int a, int b) {
return (a != 0 && b != 0) ?
alog[(log[a & 0xFF] + log[b & 0xFF]) % 255] :
0;
}
// convenience method used in generating Transposition boxes
static final int mul4 (int a, byte[] b) {
if (a == 0) return 0;
a = log[a & 0xFF];
int a0 = (b[0] != 0) ? alog[(a + log[b[0] & 0xFF]) % 255] & 0xFF : 0;
int a1 = (b[1] != 0) ? alog[(a + log[b[1] & 0xFF]) % 255] & 0xFF : 0;
int a2 = (b[2] != 0) ? alog[(a + log[b[2] & 0xFF]) % 255] & 0xFF : 0;
int a3 = (b[3] != 0) ? alog[(a + log[b[3] & 0xFF]) % 255] & 0xFF : 0;
return a0 << 24 | a1 << 16 | a2 << 8 | a3;
}
// Basic API methods
//...........................................................................
/**
* Convenience method to expand a user-supplied key material into a
* session key, assuming Rijndael's default block size (128-bit).
*
* @param k The 128/192/256-bit user-key to use.
* @exception InvalidKeyException If the key is invalid.
*/
public static final Object makeKey (byte[] k) throws InvalidKeyException {
return makeKey(k, BLOCK_SIZE);
}
/**
* Convenience method to encrypt exactly one block of plaintext, assuming
* Rijndael's default block size (128-bit).
*
* @param in The plaintext.
* @param result The buffer into which to write the resulting ciphertext.
* @param inOffset Index of in from which to start considering data.
* @param sessionKey The session key to use for encryption.
*/
public static final void
blockEncrypt (byte[] in, byte[] result, int inOffset, Object sessionKey) {
if (RDEBUG) trace(IN, "blockEncrypt("+in+", "+inOffset+", "+sessionKey+")");
int[][] Ke = (int[][]) ((Object[]) sessionKey)[0]; // extract encryption round keys
int ROUNDS = Ke.length - 1;
int[] Ker = Ke[0];
// plaintext to ints + key
int t0 = ((in[inOffset++] & 0xFF) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ Ker[0];
int t1 = ((in[inOffset++] & 0xFF) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ Ker[1];
int t2 = ((in[inOffset++] & 0xFF) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ Ker[2];
int t3 = ((in[inOffset++] & 0xFF) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ Ker[3];
int a0, a1, a2, a3;
for (int r = 1; r < ROUNDS; r++) { // apply round transforms
Ker = Ke[r];
a0 = (T1[(t0 >>> 24) & 0xFF] ^
T2[(t1 >>> 16) & 0xFF] ^
T3[(t2 >>> 8) & 0xFF] ^
T4[ t3 & 0xFF] ) ^ Ker[0];
a1 = (T1[(t1 >>> 24) & 0xFF] ^
T2[(t2 >>> 16) & 0xFF] ^
T3[(t3 >>> 8) & 0xFF] ^
T4[ t0 & 0xFF] ) ^ Ker[1];
a2 = (T1[(t2 >>> 24) & 0xFF] ^
T2[(t3 >>> 16) & 0xFF] ^
T3[(t0 >>> 8) & 0xFF] ^
T4[ t1 & 0xFF] ) ^ Ker[2];
a3 = (T1[(t3 >>> 24) & 0xFF] ^
T2[(t0 >>> 16) & 0xFF] ^
T3[(t1 >>> 8) & 0xFF] ^
T4[ t2 & 0xFF] ) ^ Ker[3];
t0 = a0;
t1 = a1;
t2 = a2;
t3 = a3;
if (RDEBUG && debuglevel > 6) System.out.println("CT"+r+"="+intToString(t0)+intToString(t1)+intToString(t2)+intToString(t3));
}
// last round is special
Ker = Ke[ROUNDS];
int tt = Ker[0];
result[ 0] = (byte)(S[(t0 >>> 24) & 0xFF] ^ (tt >>> 24));
result[ 1] = (byte)(S[(t1 >>> 16) & 0xFF] ^ (tt >>> 16));
result[ 2] = (byte)(S[(t2 >>> 8) & 0xFF] ^ (tt >>> 8));
result[ 3] = (byte)(S[ t3 & 0xFF] ^ tt );
tt = Ker[1];
result[ 4] = (byte)(S[(t1 >>> 24) & 0xFF] ^ (tt >>> 24));
result[ 5] = (byte)(S[(t2 >>> 16) & 0xFF] ^ (tt >>> 16));
result[ 6] = (byte)(S[(t3 >>> 8) & 0xFF] ^ (tt >>> 8));
result[ 7] = (byte)(S[ t0 & 0xFF] ^ tt );
tt = Ker[2];
result[ 8] = (byte)(S[(t2 >>> 24) & 0xFF] ^ (tt >>> 24));
result[ 9] = (byte)(S[(t3 >>> 16) & 0xFF] ^ (tt >>> 16));
result[10] = (byte)(S[(t0 >>> 8) & 0xFF] ^ (tt >>> 8));
result[11] = (byte)(S[ t1 & 0xFF] ^ tt );
tt = Ker[3];
result[12] = (byte)(S[(t3 >>> 24) & 0xFF] ^ (tt >>> 24));
result[13] = (byte)(S[(t0 >>> 16) & 0xFF] ^ (tt >>> 16));
result[14] = (byte)(S[(t1 >>> 8) & 0xFF] ^ (tt >>> 8));
result[15] = (byte)(S[ t2 & 0xFF] ^ tt );
if (RDEBUG && debuglevel > 6) {
System.out.println("CT="+toString(result));
System.out.println();
}
if (RDEBUG) trace(OUT, "blockEncrypt()");
}
/**
* Convenience method to decrypt exactly one block of plaintext, assuming
* Rijndael's default block size (128-bit).
*
* @param in The ciphertext.
* @param result the resulting ciphertext
* @param inOffset Index of in from which to start considering data.
* @param sessionKey The session key to use for decryption.
*/
public static final void
blockDecrypt (byte[] in, byte[] result, int inOffset, Object sessionKey) {
if (RDEBUG) trace(IN, "blockDecrypt("+in+", "+inOffset+", "+sessionKey+")");
int[][] Kd = (int[][]) ((Object[]) sessionKey)[1]; // extract decryption round keys
int ROUNDS = Kd.length - 1;
int[] Kdr = Kd[0];
// ciphertext to ints + key
int t0 = ((in[inOffset++] & 0xFF) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ Kdr[0];
int t1 = ((in[inOffset++] & 0xFF) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ Kdr[1];
int t2 = ((in[inOffset++] & 0xFF) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ Kdr[2];
int t3 = ((in[inOffset++] & 0xFF) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ Kdr[3];
int a0, a1, a2, a3;
for (int r = 1; r < ROUNDS; r++) { // apply round transforms
Kdr = Kd[r];
a0 = (T5[(t0 >>> 24) & 0xFF] ^
T6[(t3 >>> 16) & 0xFF] ^
T7[(t2 >>> 8) & 0xFF] ^
T8[ t1 & 0xFF] ) ^ Kdr[0];
a1 = (T5[(t1 >>> 24) & 0xFF] ^
T6[(t0 >>> 16) & 0xFF] ^
T7[(t3 >>> 8) & 0xFF] ^
T8[ t2 & 0xFF] ) ^ Kdr[1];
a2 = (T5[(t2 >>> 24) & 0xFF] ^
T6[(t1 >>> 16) & 0xFF] ^
T7[(t0 >>> 8) & 0xFF] ^
T8[ t3 & 0xFF] ) ^ Kdr[2];
a3 = (T5[(t3 >>> 24) & 0xFF] ^
T6[(t2 >>> 16) & 0xFF] ^
T7[(t1 >>> 8) & 0xFF] ^
T8[ t0 & 0xFF] ) ^ Kdr[3];
t0 = a0;
t1 = a1;
t2 = a2;
t3 = a3;
if (RDEBUG && debuglevel > 6) System.out.println("PT"+r+"="+intToString(t0)+intToString(t1)+intToString(t2)+intToString(t3));
}
// last round is special
Kdr = Kd[ROUNDS];
int tt = Kdr[0];
result[ 0] = (byte)(Si[(t0 >>> 24) & 0xFF] ^ (tt >>> 24));
result[ 1] = (byte)(Si[(t3 >>> 16) & 0xFF] ^ (tt >>> 16));
result[ 2] = (byte)(Si[(t2 >>> 8) & 0xFF] ^ (tt >>> 8));
result[ 3] = (byte)(Si[ t1 & 0xFF] ^ tt );
tt = Kdr[1];
result[ 4] = (byte)(Si[(t1 >>> 24) & 0xFF] ^ (tt >>> 24));
result[ 5] = (byte)(Si[(t0 >>> 16) & 0xFF] ^ (tt >>> 16));
result[ 6] = (byte)(Si[(t3 >>> 8) & 0xFF] ^ (tt >>> 8));
result[ 7] = (byte)(Si[ t2 & 0xFF] ^ tt );
tt = Kdr[2];
result[ 8] = (byte)(Si[(t2 >>> 24) & 0xFF] ^ (tt >>> 24));
result[ 9] = (byte)(Si[(t1 >>> 16) & 0xFF] ^ (tt >>> 16));
result[10] = (byte)(Si[(t0 >>> 8) & 0xFF] ^ (tt >>> 8));
result[11] = (byte)(Si[ t3 & 0xFF] ^ tt );
tt = Kdr[3];
result[12] = (byte)(Si[(t3 >>> 24) & 0xFF] ^ (tt >>> 24));
result[13] = (byte)(Si[(t2 >>> 16) & 0xFF] ^ (tt >>> 16));
result[14] = (byte)(Si[(t1 >>> 8) & 0xFF] ^ (tt >>> 8));
result[15] = (byte)(Si[ t0 & 0xFF] ^ tt );
if (RDEBUG && debuglevel > 6) {
System.out.println("PT="+toString(result));
System.out.println();
}
if (RDEBUG) trace(OUT, "blockDecrypt()");
}
/** A basic symmetric encryption/decryption test. */
public static boolean self_test() { return self_test(BLOCK_SIZE); }
// Rijndael own methods
//...........................................................................
/** @return The default length in bytes of the Algorithm input block. */
public static final int blockSize() { return BLOCK_SIZE; }
/**
* Expand a user-supplied key material into a session key.
*
* @param k The 128/192/256-bit user-key to use.
* @param blockSize The block size in bytes of this Rijndael.
* @exception InvalidKeyException If the key is invalid.
*/
//TODO: This method doesn't really need synchronization. The only reason
//I can see for it to be synchronized is that it will consume 100% CPU (due to
//heavy calculations) when called. Probably should be unsynchronized if we
//want better support for dual+ CPU machines. /Iakin 2003-10-12
//Concur: the class has no fields which are not final, and does
//not reference fields of any other classes. Control over how
//many simultaneous makeKey invocations should be allowed is
//a problem the callers should resolve among themselves.
//It is a fact that allowing no more than one makeKey on any given
//CPU will result in fewer cache misses. -- ejhuff 2003-10-12
public final static synchronized Object makeKey (byte[] k, int blockSize)
throws InvalidKeyException {
if (RDEBUG) trace(IN, "makeKey("+k+", "+blockSize+")");
if (k == null)
throw new InvalidKeyException("Empty key");
if (!(k.length == 16 || k.length == 24 || k.length == 32))
throw new InvalidKeyException("Incorrect key length");
int ROUNDS = getRounds(k.length, blockSize);
int BC = blockSize / 4;
int[][] Ke = new int[ROUNDS + 1][BC]; // encryption round keys
int[][] Kd = new int[ROUNDS + 1][BC]; // decryption round keys
int ROUND_KEY_COUNT = (ROUNDS + 1) * BC;
int KC = k.length / 4;
int[] tk = new int[KC];
int i, j;
// copy user material bytes into temporary ints
for (i = 0, j = 0; i < KC; )
tk[i++] = (k[j++] & 0xFF) << 24 |
(k[j++] & 0xFF) << 16 |
(k[j++] & 0xFF) << 8 |
(k[j++] & 0xFF);
// copy values into round key arrays
int t = 0;
for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) {
Ke[t / BC][t % BC] = tk[j];
Kd[ROUNDS - (t / BC)][t % BC] = tk[j];
}
int tt, rconpointer = 0;
while (t < ROUND_KEY_COUNT) {
// extrapolate using phi (the round key evolution function)
tt = tk[KC - 1];
tk[0] ^= (S[(tt >>> 16) & 0xFF] & 0xFF) << 24 ^
(S[(tt >>> 8) & 0xFF] & 0xFF) << 16 ^
(S[ tt & 0xFF] & 0xFF) << 8 ^
(S[(tt >>> 24) & 0xFF] & 0xFF) ^
(rcon[rconpointer++] & 0xFF) << 24;
if (KC != 8)
for (i = 1, j = 0; i < KC; ) {
//tk[i++] ^= tk[j++];
// The above line replaced with the code below in order to work around
// a bug in the kjc-1.4F java compiler (which has been reported).
tk[i] ^= tk[j++];
i++;
}
else {
for (i = 1, j = 0; i < KC / 2; ) {
//tk[i++] ^= tk[j++];
// The above line replaced with the code below in order to work around
// a bug in the kjc-1.4F java compiler (which has been reported).
tk[i] ^= tk[j++];
i++;
}
tt = tk[KC / 2 - 1];
tk[KC / 2] ^= (S[ tt & 0xFF] & 0xFF) ^
(S[(tt >>> 8) & 0xFF] & 0xFF) << 8 ^
(S[(tt >>> 16) & 0xFF] & 0xFF) << 16 ^
(S[(tt >>> 24) & 0xFF] & 0xFF) << 24;
for (j = KC / 2, i = j + 1; i < KC; ) {
//tk[i++] ^= tk[j++];
// The above line replaced with the code below in order to work around
// a bug in the kjc-1.4F java compiler (which has been reported).
tk[i] ^= tk[j++];
i++;
}
}
// copy values into round key arrays
for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) {
Ke[t / BC][t % BC] = tk[j];
Kd[ROUNDS - (t / BC)][t % BC] = tk[j];
}
}
for (int r = 1; r < ROUNDS; r++) // inverse MixColumn where needed
for (j = 0; j < BC; j++) {
tt = Kd[r][j];
Kd[r][j] = U1[(tt >>> 24) & 0xFF] ^
U2[(tt >>> 16) & 0xFF] ^
U3[(tt >>> 8) & 0xFF] ^
U4[ tt & 0xFF];
}
// assemble the encryption (Ke) and decryption (Kd) round keys into
// one sessionKey object
Object[] sessionKey = new Object[] {Ke, Kd};
if (RDEBUG) trace(OUT, "makeKey()");
return sessionKey;
}
/**
* Encrypt exactly one block of plaintext.
*
* @param in The plaintext.
* @param result The buffer into which to write the resulting ciphertext.
* @param inOffset Index of in from which to start considering data.
* @param sessionKey The session key to use for encryption.
* @param blockSize The block size in bytes of this Rijndael.
*/
public static final void
blockEncrypt (byte[] in, byte[] result, int inOffset, Object sessionKey, int blockSize) {
if (blockSize == BLOCK_SIZE) {
blockEncrypt(in, result, inOffset, sessionKey);
return;
}
if (RDEBUG) trace(IN, "blockEncrypt("+in+", "+inOffset+", "+sessionKey+", "+blockSize+")");
Object[] sKey = (Object[]) sessionKey; // extract encryption round keys
int[][] Ke = (int[][]) sKey[0];
int BC = blockSize / 4;
int ROUNDS = Ke.length - 1;
int SC = BC == 4 ? 0 : (BC == 6 ? 1 : 2);
int s1 = shifts[SC][1][0];
int s2 = shifts[SC][2][0];
int s3 = shifts[SC][3][0];
int[] a = new int[BC];
int[] t = new int[BC]; // temporary work array
int i;
int j = 0, tt;
for (i = 0; i < BC; i++) // plaintext to ints + key
t[i] = ((in[inOffset++] & 0xFF) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ Ke[0][i];
for (int r = 1; r < ROUNDS; r++) { // apply round transforms
for (i = 0; i < BC; i++)
a[i] = (T1[(t[ i ] >>> 24) & 0xFF] ^
T2[(t[(i + s1) % BC] >>> 16) & 0xFF] ^
T3[(t[(i + s2) % BC] >>> 8) & 0xFF] ^
T4[ t[(i + s3) % BC] & 0xFF] ) ^ Ke[r][i];
System.arraycopy(a, 0, t, 0, BC);
if (RDEBUG && debuglevel > 6) System.out.println("CT"+r+"="+toString(t));
}
for (i = 0; i < BC; i++) { // last round is special
tt = Ke[ROUNDS][i];
result[j++] = (byte)(S[(t[ i ] >>> 24) & 0xFF] ^ (tt >>> 24));
result[j++] = (byte)(S[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ (tt >>> 16));
result[j++] = (byte)(S[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ (tt >>> 8));
result[j++] = (byte)(S[ t[(i + s3) % BC] & 0xFF] ^ tt);
}
if (RDEBUG && debuglevel > 6) {
System.out.println("CT="+toString(result));
System.out.println();
}
if (RDEBUG) trace(OUT, "blockEncrypt()");
}
/**
* Decrypt exactly one block of ciphertext.
*
* @param in The ciphertext.
* @param result The resulting ciphertext.
* @param inOffset Index of in from which to start considering data.
* @param sessionKey The session key to use for decryption.
* @param blockSize The block size in bytes of this Rijndael.
*/
public static final void
blockDecrypt (byte[] in, byte[] result, int inOffset, Object sessionKey, int blockSize) {
if (blockSize == BLOCK_SIZE) {
blockDecrypt(in, result, inOffset, sessionKey);
return;
}
if (RDEBUG) trace(IN, "blockDecrypt("+in+", "+inOffset+", "+sessionKey+", "+blockSize+")");
Object[] sKey = (Object[]) sessionKey; // extract decryption round keys
int[][] Kd = (int[][]) sKey[1];
int BC = blockSize / 4;
int ROUNDS = Kd.length - 1;
int SC = BC == 4 ? 0 : (BC == 6 ? 1 : 2);
int s1 = shifts[SC][1][1];
int s2 = shifts[SC][2][1];
int s3 = shifts[SC][3][1];
int[] a = new int[BC];
int[] t = new int[BC]; // temporary work array
int i;
int j = 0, tt;
for (i = 0; i < BC; i++) // ciphertext to ints + key
t[i] = ((in[inOffset++] & 0xFF) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ Kd[0][i];
for (int r = 1; r < ROUNDS; r++) { // apply round transforms
for (i = 0; i < BC; i++)
a[i] = (T5[(t[ i ] >>> 24) & 0xFF] ^
T6[(t[(i + s1) % BC] >>> 16) & 0xFF] ^
T7[(t[(i + s2) % BC] >>> 8) & 0xFF] ^
T8[ t[(i + s3) % BC] & 0xFF] ) ^ Kd[r][i];
System.arraycopy(a, 0, t, 0, BC);
if (RDEBUG && debuglevel > 6) System.out.println("PT"+r+"="+toString(t));
}
for (i = 0; i < BC; i++) { // last round is special
tt = Kd[ROUNDS][i];
result[j++] = (byte)(Si[(t[ i ] >>> 24) & 0xFF] ^ (tt >>> 24));
result[j++] = (byte)(Si[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ (tt >>> 16));
result[j++] = (byte)(Si[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ (tt >>> 8));
result[j++] = (byte)(Si[ t[(i + s3) % BC] & 0xFF] ^ tt);
}
if (RDEBUG && debuglevel > 6) {
System.out.println("PT="+toString(result));
System.out.println();
}
if (RDEBUG) trace(OUT, "blockDecrypt()");
}
/** A basic symmetric encryption/decryption test for a given key size. */
private static boolean self_test (int keysize) {
if (RDEBUG) trace(IN, "self_test("+keysize+")");
boolean ok = false;
try {
byte[] kb = new byte[keysize];
byte[] pt = new byte[BLOCK_SIZE];
int i;
for (i = 0; i < keysize; i++)
kb[i] = (byte) i;
for (i = 0; i < BLOCK_SIZE; i++)
pt[i] = (byte) i;
if (RDEBUG && debuglevel > 6) {
System.out.println("==========");
System.out.println();
System.out.println("KEYSIZE="+(8*keysize));
System.out.println("KEY="+toString(kb));
System.out.println();
}
Object key = makeKey(kb, BLOCK_SIZE);
if (RDEBUG && debuglevel > 6) {
System.out.println("Intermediate Ciphertext Values (Encryption)");
System.out.println();
System.out.println("PT="+toString(pt));
}
byte[] ct = new byte[BLOCK_SIZE];
blockEncrypt(pt, ct, 0, key, BLOCK_SIZE);
if (RDEBUG && debuglevel > 6) {
System.out.println("Intermediate Plaintext Values (Decryption)");
System.out.println();
System.out.println("CT="+toString(ct));
}
byte[] cpt = new byte[BLOCK_SIZE];
blockDecrypt(ct, cpt, 0, key, BLOCK_SIZE);
ok = areEqual(pt, cpt);
if (!ok)
throw new RuntimeException("Symmetric operation failed");
}
catch (Exception x) {
if (RDEBUG && debuglevel > 0) {
debug("Exception encountered during self-test: " + x.getMessage());
x.printStackTrace();
}
}
if (RDEBUG && debuglevel > 0) debug("Self-test OK? " + ok);
if (RDEBUG) trace(OUT, "self_test()");
return ok;
}
/**
* Return The number of rounds for a given Rijndael's key and block sizes.
*
* @param keySize The size of the user key material in bytes.
* @param blockSize The desired block size in bytes.
* @return The number of rounds for a given Rijndael's key and
* block sizes.
*/
public static final int getRounds (int keySize, int blockSize) {
switch (keySize) {
case 16:
return blockSize == 16 ? 10 : (blockSize == 24 ? 12 : 14);
case 24:
return blockSize != 32 ? 12 : 14;
default: // 32 bytes = 256 bits
return 14;
}
}
// utility static methods (from cryptix.util.core ArrayUtil and Hex classes)
//...........................................................................
/**
* Compares two byte arrays for equality.
*
* @return true if the arrays have identical contents
*/
private static final boolean areEqual (byte[] a, byte[] b) {
int aLength = a.length;
if (aLength != b.length)
return false;
for (int i = 0; i < aLength; i++)
if (a[i] != b[i])
return false;
return true;
}
/**
* Returns a string of 2 hexadecimal digits (most significant
* digit first) corresponding to the lowest 8 bits of n.
*/
private static final String byteToString (int n) {
char[] buf = {
HEX_DIGITS[(n >>> 4) & 0x0F],
HEX_DIGITS[ n & 0x0F]
};
return new String(buf);
}
/**
* Returns a string of 8 hexadecimal digits (most significant
* digit first) corresponding to the integer n, which is
* treated as unsigned.
*/
private static final String intToString (int n) {
char[] buf = new char[8];
for (int i = 7; i >= 0; i--) {
buf[i] = HEX_DIGITS[n & 0x0F];
n >>>= 4;
}
return new String(buf);
}
/**
* Returns a string of hexadecimal digits from a byte array. Each
* byte is converted to 2 hex symbols.
*/
private static final String toString (byte[] ba) {
int length = ba.length;
char[] buf = new char[length * 2];
for (int i = 0, j = 0, k; i < length; ) {
k = ba[i++];
buf[j++] = HEX_DIGITS[(k >>> 4) & 0x0F];
buf[j++] = HEX_DIGITS[ k & 0x0F];
}
return new String(buf);
}
/**
* Returns a string of hexadecimal digits from an integer array. Each
* int is converted to 4 hex symbols.
*/
private static final String toString (int[] ia) {
int length = ia.length;
char[] buf = new char[length * 8];
for (int i = 0, j = 0, k; i < length; i++) {
k = ia[i];
buf[j++] = HEX_DIGITS[(k >>> 28) & 0x0F];
buf[j++] = HEX_DIGITS[(k >>> 24) & 0x0F];
buf[j++] = HEX_DIGITS[(k >>> 20) & 0x0F];
buf[j++] = HEX_DIGITS[(k >>> 16) & 0x0F];
buf[j++] = HEX_DIGITS[(k >>> 12) & 0x0F];
buf[j++] = HEX_DIGITS[(k >>> 8) & 0x0F];
buf[j++] = HEX_DIGITS[(k >>> 4) & 0x0F];
buf[j++] = HEX_DIGITS[ k & 0x0F];
}
return new String(buf);
}
// main(): use to generate the Intermediate Values KAT
//...........................................................................
public static void main (String[] args) {
self_test(16);
self_test(24);
self_test(32);
}
}