All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.genexus.util.Twofish_Algorithm Maven / Gradle / Ivy

Go to download

Core classes for the runtime used by Java and Android apps generated with GeneXus

There is a newer version: 4.7.3
Show newest version
/*
 * Copyright (c) 1997, 1998 Systemics Ltd on behalf of
 * the Cryptix Development Team. All rights reserved.
 */
package com.genexus.util;

import java.io.PrintWriter;
import java.security.InvalidKeyException;

//...........................................................................
/**
 * Twofish is an AES candidate algorithm. It is a balanced 128-bit Feistel
 * cipher, consisting of 16 rounds. In each round, a 64-bit S-box value is
 * computed from 64 bits of the block, and this value is xored into the other
 * half of the block. The two half-blocks are then exchanged, and the next
 * round begins. Before the first round, all input bits are xored with key-
 * dependent "whitening" subkeys, and after the final round the output bits
 * are xored with other key-dependent whitening subkeys; these subkeys are
 * not used anywhere else in the algorithm.

* * Twofish was submitted by Bruce Schneier, Doug Whiting, John Kelsey, Chris * Hall and David Wagner.

* * Reference:

    *
  1. TWOFISH2.C -- Optimized C API calls for TWOFISH AES submission, * Version 1.00, April 1998, by Doug Whiting.

* * Copyright © 1998 * Systemics Ltd on behalf of the * Cryptix Development Team. *
All rights reserved.

* * $Revision: 1.1 $ * @author Raif S. Naffah */ public final class Twofish_Algorithm // implicit no-argument constructor { // Debugging methods and variables //........................................................................... static final String NAME = "Twofish_Algorithm"; static final boolean IN = true, OUT = false; static final boolean DEBUG = Twofish_Properties.GLOBAL_DEBUG; static final int debuglevel = DEBUG ? Twofish_Properties.getLevel(NAME) : 0; static final PrintWriter err = DEBUG ? Twofish_Properties.getOutput() : null; static final boolean TRACE = Twofish_Properties.isTraceable(NAME); static void debug (String s) { if (s != null) err.println(">>> "+NAME+": "+s); } static void trace (boolean in, String s) { if (TRACE && err != null) err.println((in?"==> ":"<== ")+NAME+"."+s); } static void trace (String s) { if (TRACE && err != null) err.println("<=> "+NAME+"."+s); } // Constants and variables //........................................................................... static final int BLOCK_SIZE = 16; // bytes in a data-block private static final int ROUNDS = 16; private static final int MAX_ROUNDS = 16; // max # rounds (for allocating subkeys) /* Subkey array indices */ private static final int INPUT_WHITEN = 0; private static final int OUTPUT_WHITEN = INPUT_WHITEN + BLOCK_SIZE/4; private static final int ROUND_SUBKEYS = OUTPUT_WHITEN + BLOCK_SIZE/4; // 2*(# rounds) private static final int TOTAL_SUBKEYS = ROUND_SUBKEYS + 2*MAX_ROUNDS; private static final int SK_STEP = 0x02020202; private static final int SK_BUMP = 0x01010101; private static final int SK_ROTL = 9; /** Fixed 8x8 permutation S-boxes */ private static final byte[][] P = new byte[][] { { // p0 (byte) 0xA9, (byte) 0x67, (byte) 0xB3, (byte) 0xE8, (byte) 0x04, (byte) 0xFD, (byte) 0xA3, (byte) 0x76, (byte) 0x9A, (byte) 0x92, (byte) 0x80, (byte) 0x78, (byte) 0xE4, (byte) 0xDD, (byte) 0xD1, (byte) 0x38, (byte) 0x0D, (byte) 0xC6, (byte) 0x35, (byte) 0x98, (byte) 0x18, (byte) 0xF7, (byte) 0xEC, (byte) 0x6C, (byte) 0x43, (byte) 0x75, (byte) 0x37, (byte) 0x26, (byte) 0xFA, (byte) 0x13, (byte) 0x94, (byte) 0x48, (byte) 0xF2, (byte) 0xD0, (byte) 0x8B, (byte) 0x30, (byte) 0x84, (byte) 0x54, (byte) 0xDF, (byte) 0x23, (byte) 0x19, (byte) 0x5B, (byte) 0x3D, (byte) 0x59, (byte) 0xF3, (byte) 0xAE, (byte) 0xA2, (byte) 0x82, (byte) 0x63, (byte) 0x01, (byte) 0x83, (byte) 0x2E, (byte) 0xD9, (byte) 0x51, (byte) 0x9B, (byte) 0x7C, (byte) 0xA6, (byte) 0xEB, (byte) 0xA5, (byte) 0xBE, (byte) 0x16, (byte) 0x0C, (byte) 0xE3, (byte) 0x61, (byte) 0xC0, (byte) 0x8C, (byte) 0x3A, (byte) 0xF5, (byte) 0x73, (byte) 0x2C, (byte) 0x25, (byte) 0x0B, (byte) 0xBB, (byte) 0x4E, (byte) 0x89, (byte) 0x6B, (byte) 0x53, (byte) 0x6A, (byte) 0xB4, (byte) 0xF1, (byte) 0xE1, (byte) 0xE6, (byte) 0xBD, (byte) 0x45, (byte) 0xE2, (byte) 0xF4, (byte) 0xB6, (byte) 0x66, (byte) 0xCC, (byte) 0x95, (byte) 0x03, (byte) 0x56, (byte) 0xD4, (byte) 0x1C, (byte) 0x1E, (byte) 0xD7, (byte) 0xFB, (byte) 0xC3, (byte) 0x8E, (byte) 0xB5, (byte) 0xE9, (byte) 0xCF, (byte) 0xBF, (byte) 0xBA, (byte) 0xEA, (byte) 0x77, (byte) 0x39, (byte) 0xAF, (byte) 0x33, (byte) 0xC9, (byte) 0x62, (byte) 0x71, (byte) 0x81, (byte) 0x79, (byte) 0x09, (byte) 0xAD, (byte) 0x24, (byte) 0xCD, (byte) 0xF9, (byte) 0xD8, (byte) 0xE5, (byte) 0xC5, (byte) 0xB9, (byte) 0x4D, (byte) 0x44, (byte) 0x08, (byte) 0x86, (byte) 0xE7, (byte) 0xA1, (byte) 0x1D, (byte) 0xAA, (byte) 0xED, (byte) 0x06, (byte) 0x70, (byte) 0xB2, (byte) 0xD2, (byte) 0x41, (byte) 0x7B, (byte) 0xA0, (byte) 0x11, (byte) 0x31, (byte) 0xC2, (byte) 0x27, (byte) 0x90, (byte) 0x20, (byte) 0xF6, (byte) 0x60, (byte) 0xFF, (byte) 0x96, (byte) 0x5C, (byte) 0xB1, (byte) 0xAB, (byte) 0x9E, (byte) 0x9C, (byte) 0x52, (byte) 0x1B, (byte) 0x5F, (byte) 0x93, (byte) 0x0A, (byte) 0xEF, (byte) 0x91, (byte) 0x85, (byte) 0x49, (byte) 0xEE, (byte) 0x2D, (byte) 0x4F, (byte) 0x8F, (byte) 0x3B, (byte) 0x47, (byte) 0x87, (byte) 0x6D, (byte) 0x46, (byte) 0xD6, (byte) 0x3E, (byte) 0x69, (byte) 0x64, (byte) 0x2A, (byte) 0xCE, (byte) 0xCB, (byte) 0x2F, (byte) 0xFC, (byte) 0x97, (byte) 0x05, (byte) 0x7A, (byte) 0xAC, (byte) 0x7F, (byte) 0xD5, (byte) 0x1A, (byte) 0x4B, (byte) 0x0E, (byte) 0xA7, (byte) 0x5A, (byte) 0x28, (byte) 0x14, (byte) 0x3F, (byte) 0x29, (byte) 0x88, (byte) 0x3C, (byte) 0x4C, (byte) 0x02, (byte) 0xB8, (byte) 0xDA, (byte) 0xB0, (byte) 0x17, (byte) 0x55, (byte) 0x1F, (byte) 0x8A, (byte) 0x7D, (byte) 0x57, (byte) 0xC7, (byte) 0x8D, (byte) 0x74, (byte) 0xB7, (byte) 0xC4, (byte) 0x9F, (byte) 0x72, (byte) 0x7E, (byte) 0x15, (byte) 0x22, (byte) 0x12, (byte) 0x58, (byte) 0x07, (byte) 0x99, (byte) 0x34, (byte) 0x6E, (byte) 0x50, (byte) 0xDE, (byte) 0x68, (byte) 0x65, (byte) 0xBC, (byte) 0xDB, (byte) 0xF8, (byte) 0xC8, (byte) 0xA8, (byte) 0x2B, (byte) 0x40, (byte) 0xDC, (byte) 0xFE, (byte) 0x32, (byte) 0xA4, (byte) 0xCA, (byte) 0x10, (byte) 0x21, (byte) 0xF0, (byte) 0xD3, (byte) 0x5D, (byte) 0x0F, (byte) 0x00, (byte) 0x6F, (byte) 0x9D, (byte) 0x36, (byte) 0x42, (byte) 0x4A, (byte) 0x5E, (byte) 0xC1, (byte) 0xE0 }, { // p1 (byte) 0x75, (byte) 0xF3, (byte) 0xC6, (byte) 0xF4, (byte) 0xDB, (byte) 0x7B, (byte) 0xFB, (byte) 0xC8, (byte) 0x4A, (byte) 0xD3, (byte) 0xE6, (byte) 0x6B, (byte) 0x45, (byte) 0x7D, (byte) 0xE8, (byte) 0x4B, (byte) 0xD6, (byte) 0x32, (byte) 0xD8, (byte) 0xFD, (byte) 0x37, (byte) 0x71, (byte) 0xF1, (byte) 0xE1, (byte) 0x30, (byte) 0x0F, (byte) 0xF8, (byte) 0x1B, (byte) 0x87, (byte) 0xFA, (byte) 0x06, (byte) 0x3F, (byte) 0x5E, (byte) 0xBA, (byte) 0xAE, (byte) 0x5B, (byte) 0x8A, (byte) 0x00, (byte) 0xBC, (byte) 0x9D, (byte) 0x6D, (byte) 0xC1, (byte) 0xB1, (byte) 0x0E, (byte) 0x80, (byte) 0x5D, (byte) 0xD2, (byte) 0xD5, (byte) 0xA0, (byte) 0x84, (byte) 0x07, (byte) 0x14, (byte) 0xB5, (byte) 0x90, (byte) 0x2C, (byte) 0xA3, (byte) 0xB2, (byte) 0x73, (byte) 0x4C, (byte) 0x54, (byte) 0x92, (byte) 0x74, (byte) 0x36, (byte) 0x51, (byte) 0x38, (byte) 0xB0, (byte) 0xBD, (byte) 0x5A, (byte) 0xFC, (byte) 0x60, (byte) 0x62, (byte) 0x96, (byte) 0x6C, (byte) 0x42, (byte) 0xF7, (byte) 0x10, (byte) 0x7C, (byte) 0x28, (byte) 0x27, (byte) 0x8C, (byte) 0x13, (byte) 0x95, (byte) 0x9C, (byte) 0xC7, (byte) 0x24, (byte) 0x46, (byte) 0x3B, (byte) 0x70, (byte) 0xCA, (byte) 0xE3, (byte) 0x85, (byte) 0xCB, (byte) 0x11, (byte) 0xD0, (byte) 0x93, (byte) 0xB8, (byte) 0xA6, (byte) 0x83, (byte) 0x20, (byte) 0xFF, (byte) 0x9F, (byte) 0x77, (byte) 0xC3, (byte) 0xCC, (byte) 0x03, (byte) 0x6F, (byte) 0x08, (byte) 0xBF, (byte) 0x40, (byte) 0xE7, (byte) 0x2B, (byte) 0xE2, (byte) 0x79, (byte) 0x0C, (byte) 0xAA, (byte) 0x82, (byte) 0x41, (byte) 0x3A, (byte) 0xEA, (byte) 0xB9, (byte) 0xE4, (byte) 0x9A, (byte) 0xA4, (byte) 0x97, (byte) 0x7E, (byte) 0xDA, (byte) 0x7A, (byte) 0x17, (byte) 0x66, (byte) 0x94, (byte) 0xA1, (byte) 0x1D, (byte) 0x3D, (byte) 0xF0, (byte) 0xDE, (byte) 0xB3, (byte) 0x0B, (byte) 0x72, (byte) 0xA7, (byte) 0x1C, (byte) 0xEF, (byte) 0xD1, (byte) 0x53, (byte) 0x3E, (byte) 0x8F, (byte) 0x33, (byte) 0x26, (byte) 0x5F, (byte) 0xEC, (byte) 0x76, (byte) 0x2A, (byte) 0x49, (byte) 0x81, (byte) 0x88, (byte) 0xEE, (byte) 0x21, (byte) 0xC4, (byte) 0x1A, (byte) 0xEB, (byte) 0xD9, (byte) 0xC5, (byte) 0x39, (byte) 0x99, (byte) 0xCD, (byte) 0xAD, (byte) 0x31, (byte) 0x8B, (byte) 0x01, (byte) 0x18, (byte) 0x23, (byte) 0xDD, (byte) 0x1F, (byte) 0x4E, (byte) 0x2D, (byte) 0xF9, (byte) 0x48, (byte) 0x4F, (byte) 0xF2, (byte) 0x65, (byte) 0x8E, (byte) 0x78, (byte) 0x5C, (byte) 0x58, (byte) 0x19, (byte) 0x8D, (byte) 0xE5, (byte) 0x98, (byte) 0x57, (byte) 0x67, (byte) 0x7F, (byte) 0x05, (byte) 0x64, (byte) 0xAF, (byte) 0x63, (byte) 0xB6, (byte) 0xFE, (byte) 0xF5, (byte) 0xB7, (byte) 0x3C, (byte) 0xA5, (byte) 0xCE, (byte) 0xE9, (byte) 0x68, (byte) 0x44, (byte) 0xE0, (byte) 0x4D, (byte) 0x43, (byte) 0x69, (byte) 0x29, (byte) 0x2E, (byte) 0xAC, (byte) 0x15, (byte) 0x59, (byte) 0xA8, (byte) 0x0A, (byte) 0x9E, (byte) 0x6E, (byte) 0x47, (byte) 0xDF, (byte) 0x34, (byte) 0x35, (byte) 0x6A, (byte) 0xCF, (byte) 0xDC, (byte) 0x22, (byte) 0xC9, (byte) 0xC0, (byte) 0x9B, (byte) 0x89, (byte) 0xD4, (byte) 0xED, (byte) 0xAB, (byte) 0x12, (byte) 0xA2, (byte) 0x0D, (byte) 0x52, (byte) 0xBB, (byte) 0x02, (byte) 0x2F, (byte) 0xA9, (byte) 0xD7, (byte) 0x61, (byte) 0x1E, (byte) 0xB4, (byte) 0x50, (byte) 0x04, (byte) 0xF6, (byte) 0xC2, (byte) 0x16, (byte) 0x25, (byte) 0x86, (byte) 0x56, (byte) 0x55, (byte) 0x09, (byte) 0xBE, (byte) 0x91 } }; /** * Define the fixed p0/p1 permutations used in keyed S-box lookup. * By changing the following constant definitions, the S-boxes will * automatically get changed in the Twofish engine. */ private static final int P_00 = 1; private static final int P_01 = 0; private static final int P_02 = 0; private static final int P_03 = P_01 ^ 1; private static final int P_04 = 1; private static final int P_10 = 0; private static final int P_11 = 0; private static final int P_12 = 1; private static final int P_13 = P_11 ^ 1; private static final int P_14 = 0; private static final int P_20 = 1; private static final int P_21 = 1; private static final int P_22 = 0; private static final int P_23 = P_21 ^ 1; private static final int P_24 = 0; private static final int P_30 = 0; private static final int P_31 = 1; private static final int P_32 = 1; private static final int P_33 = P_31 ^ 1; private static final int P_34 = 1; /** Primitive polynomial for GF(256) */ private static final int GF256_FDBK = 0x169; private static final int GF256_FDBK_2 = 0x169 / 2; private static final int GF256_FDBK_4 = 0x169 / 4; /** MDS matrix */ private static final int[][] MDS = new int[4][256]; // blank final private static final int RS_GF_FDBK = 0x14D; // field generator /** data for hexadecimal visualisation. */ private static final char[] HEX_DIGITS = { '0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F' }; // Static code - to intialise the MDS matrix //........................................................................... static { long time = System.currentTimeMillis(); if (DEBUG && debuglevel > 6) { System.out.println("Algorithm Name: "+Twofish_Properties.FULL_NAME); System.out.println("Electronic Codebook (ECB) Mode"); System.out.println(); } // // precompute the MDS matrix // int[] m1 = new int[2]; int[] mX = new int[2]; int[] mY = new int[2]; int i, j; for (i = 0; i < 256; i++) { j = P[0][i] & 0xFF; // compute all the matrix elements m1[0] = j; mX[0] = Mx_X( j ) & 0xFF; mY[0] = Mx_Y( j ) & 0xFF; j = P[1][i] & 0xFF; m1[1] = j; mX[1] = Mx_X( j ) & 0xFF; mY[1] = Mx_Y( j ) & 0xFF; MDS[0][i] = m1[P_00] << 0 | // fill matrix w/ above elements mX[P_00] << 8 | mY[P_00] << 16 | mY[P_00] << 24; MDS[1][i] = mY[P_10] << 0 | mY[P_10] << 8 | mX[P_10] << 16 | m1[P_10] << 24; MDS[2][i] = mX[P_20] << 0 | mY[P_20] << 8 | m1[P_20] << 16 | mY[P_20] << 24; MDS[3][i] = mX[P_30] << 0 | m1[P_30] << 8 | mY[P_30] << 16 | mX[P_30] << 24; } time = System.currentTimeMillis() - time; if (DEBUG && debuglevel > 8) { System.out.println("=========="); System.out.println(); System.out.println("Static Data"); System.out.println(); System.out.println("MDS[0][]:"); for(i=0;i<64;i++) { for(j=0;j<4;j++) System.out.print("0x"+intToString(MDS[0][i*4+j])+", "); System.out.println();} System.out.println(); System.out.println("MDS[1][]:"); for(i=0;i<64;i++) { for(j=0;j<4;j++) System.out.print("0x"+intToString(MDS[1][i*4+j])+", "); System.out.println();} System.out.println(); System.out.println("MDS[2][]:"); for(i=0;i<64;i++) { for(j=0;j<4;j++) System.out.print("0x"+intToString(MDS[2][i*4+j])+", "); System.out.println();} System.out.println(); System.out.println("MDS[3][]:"); for(i=0;i<64;i++) { for(j=0;j<4;j++) System.out.print("0x"+intToString(MDS[3][i*4+j])+", "); System.out.println();} System.out.println(); System.out.println("Total initialization time: "+time+" ms."); System.out.println(); } } private static final int LFSR1( int x ) { return (x >> 1) ^ ((x & 0x01) != 0 ? GF256_FDBK_2 : 0); } private static final int LFSR2( int x ) { return (x >> 2) ^ ((x & 0x02) != 0 ? GF256_FDBK_2 : 0) ^ ((x & 0x01) != 0 ? GF256_FDBK_4 : 0); } private static final int Mx_1( int x ) { return x; } private static final int Mx_X( int x ) { return x ^ LFSR2(x); } // 5B private static final int Mx_Y( int x ) { return x ^ LFSR1(x) ^ LFSR2(x); } // EF // Basic API methods //........................................................................... /** * Expand a user-supplied key material into a session key. * * @param key The 64/128/192/256-bit user-key to use. * @return This cipher's round keys. * @exception InvalidKeyException If the key is invalid. */ public static synchronized Object makeKey (byte[] k) throws InvalidKeyException { if (DEBUG) trace(IN, "makeKey("+k+")"); if (k == null) throw new InvalidKeyException("Empty key"); int length = k.length; if (!(length == 8 || length == 16 || length == 24 || length == 32)) throw new InvalidKeyException("Incorrect key length"); if (DEBUG && debuglevel > 7) { System.out.println("Intermediate Session Key Values"); System.out.println(); System.out.println("Raw="+toString(k)); System.out.println(); } int k64Cnt = length / 8; int subkeyCnt = ROUND_SUBKEYS + 2*ROUNDS; int[] k32e = new int[4]; // even 32-bit entities int[] k32o = new int[4]; // odd 32-bit entities int[] sBoxKey = new int[4]; // // split user key material into even and odd 32-bit entities and // compute S-box keys using (12, 8) Reed-Solomon code over GF(256) // int i, j, offset = 0; for (i = 0, j = k64Cnt-1; i < 4 && offset < length; i++, j--) { k32e[i] = (k[offset++] & 0xFF) | (k[offset++] & 0xFF) << 8 | (k[offset++] & 0xFF) << 16 | (k[offset++] & 0xFF) << 24; k32o[i] = (k[offset++] & 0xFF) | (k[offset++] & 0xFF) << 8 | (k[offset++] & 0xFF) << 16 | (k[offset++] & 0xFF) << 24; sBoxKey[j] = RS_MDS_Encode( k32e[i], k32o[i] ); // reverse order } // compute the round decryption subkeys for PHT. these same subkeys // will be used in encryption but will be applied in reverse order. int q, A, B; int[] subKeys = new int[subkeyCnt]; for (i = q = 0; i < subkeyCnt/2; i++, q += SK_STEP) { A = F32( k64Cnt, q , k32e ); // A uses even key entities B = F32( k64Cnt, q+SK_BUMP, k32o ); // B uses odd key entities B = B << 8 | B >>> 24; A += B; subKeys[2*i ] = A; // combine with a PHT A += B; subKeys[2*i + 1] = A << SK_ROTL | A >>> (32-SK_ROTL); } // // fully expand the table for speed // int k0 = sBoxKey[0]; int k1 = sBoxKey[1]; int k2 = sBoxKey[2]; int k3 = sBoxKey[3]; int b0, b1, b2, b3; int[] sBox = new int[4 * 256]; for (i = 0; i < 256; i++) { b0 = b1 = b2 = b3 = i; switch (k64Cnt & 3) { case 1: sBox[ 2*i ] = MDS[0][(P[P_01][b0] & 0xFF) ^ b0(k0)]; sBox[ 2*i+1] = MDS[1][(P[P_11][b1] & 0xFF) ^ b1(k0)]; sBox[0x200+2*i ] = MDS[2][(P[P_21][b2] & 0xFF) ^ b2(k0)]; sBox[0x200+2*i+1] = MDS[3][(P[P_31][b3] & 0xFF) ^ b3(k0)]; break; case 0: // same as 4 b0 = (P[P_04][b0] & 0xFF) ^ b0(k3); b1 = (P[P_14][b1] & 0xFF) ^ b1(k3); b2 = (P[P_24][b2] & 0xFF) ^ b2(k3); b3 = (P[P_34][b3] & 0xFF) ^ b3(k3); case 3: b0 = (P[P_03][b0] & 0xFF) ^ b0(k2); b1 = (P[P_13][b1] & 0xFF) ^ b1(k2); b2 = (P[P_23][b2] & 0xFF) ^ b2(k2); b3 = (P[P_33][b3] & 0xFF) ^ b3(k2); case 2: // 128-bit keys sBox[ 2*i ] = MDS[0][(P[P_01][(P[P_02][b0] & 0xFF) ^ b0(k1)] & 0xFF) ^ b0(k0)]; sBox[ 2*i+1] = MDS[1][(P[P_11][(P[P_12][b1] & 0xFF) ^ b1(k1)] & 0xFF) ^ b1(k0)]; sBox[0x200+2*i ] = MDS[2][(P[P_21][(P[P_22][b2] & 0xFF) ^ b2(k1)] & 0xFF) ^ b2(k0)]; sBox[0x200+2*i+1] = MDS[3][(P[P_31][(P[P_32][b3] & 0xFF) ^ b3(k1)] & 0xFF) ^ b3(k0)]; } } Object sessionKey = new Object[] { sBox, subKeys }; if (DEBUG && debuglevel > 7) { System.out.println("S-box[]:"); for(i=0;i<64;i++) { for(j=0;j<4;j++) System.out.print("0x"+intToString(sBox[i*4+j])+", "); System.out.println();} System.out.println(); for(i=0;i<64;i++) { for(j=0;j<4;j++) System.out.print("0x"+intToString(sBox[256+i*4+j])+", "); System.out.println();} System.out.println(); for(i=0;i<64;i++) { for(j=0;j<4;j++) System.out.print("0x"+intToString(sBox[512+i*4+j])+", "); System.out.println();} System.out.println(); for(i=0;i<64;i++) { for(j=0;j<4;j++) System.out.print("0x"+intToString(sBox[768+i*4+j])+", "); System.out.println();} System.out.println(); System.out.println("User (odd, even) keys --> S-Box keys:"); for(i=0;i 0x"+intToString(sBoxKey[k64Cnt-1-i])); } System.out.println(); System.out.println("Round keys:"); for(i=0;i 6) System.out.println("PT="+toString(in, inOffset, BLOCK_SIZE)); int x0 = (in[inOffset++] & 0xFF) | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 24; int x1 = (in[inOffset++] & 0xFF) | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 24; int x2 = (in[inOffset++] & 0xFF) | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 24; int x3 = (in[inOffset++] & 0xFF) | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 24; x0 ^= sKey[INPUT_WHITEN ]; x1 ^= sKey[INPUT_WHITEN + 1]; x2 ^= sKey[INPUT_WHITEN + 2]; x3 ^= sKey[INPUT_WHITEN + 3]; if (DEBUG && debuglevel > 6) System.out.println("PTw="+intToString(x0)+intToString(x1)+intToString(x2)+intToString(x3)); int t0, t1; int k = ROUND_SUBKEYS; for (int R = 0; R < ROUNDS; R += 2) { t0 = Fe32( sBox, x0, 0 ); t1 = Fe32( sBox, x1, 3 ); x2 ^= t0 + t1 + sKey[k++]; x2 = x2 >>> 1 | x2 << 31; x3 = x3 << 1 | x3 >>> 31; x3 ^= t0 + 2*t1 + sKey[k++]; if (DEBUG && debuglevel > 6) System.out.println("CT"+(R)+"="+intToString(x0)+intToString(x1)+intToString(x2)+intToString(x3)); t0 = Fe32( sBox, x2, 0 ); t1 = Fe32( sBox, x3, 3 ); x0 ^= t0 + t1 + sKey[k++]; x0 = x0 >>> 1 | x0 << 31; x1 = x1 << 1 | x1 >>> 31; x1 ^= t0 + 2*t1 + sKey[k++]; if (DEBUG && debuglevel > 6) System.out.println("CT"+(R+1)+"="+intToString(x0)+intToString(x1)+intToString(x2)+intToString(x3)); } x2 ^= sKey[OUTPUT_WHITEN ]; x3 ^= sKey[OUTPUT_WHITEN + 1]; x0 ^= sKey[OUTPUT_WHITEN + 2]; x1 ^= sKey[OUTPUT_WHITEN + 3]; if (DEBUG && debuglevel > 6) System.out.println("CTw="+intToString(x0)+intToString(x1)+intToString(x2)+intToString(x3)); byte[] result = new byte[] { (byte) x2, (byte)(x2 >>> 8), (byte)(x2 >>> 16), (byte)(x2 >>> 24), (byte) x3, (byte)(x3 >>> 8), (byte)(x3 >>> 16), (byte)(x3 >>> 24), (byte) x0, (byte)(x0 >>> 8), (byte)(x0 >>> 16), (byte)(x0 >>> 24), (byte) x1, (byte)(x1 >>> 8), (byte)(x1 >>> 16), (byte)(x1 >>> 24), }; if (DEBUG && debuglevel > 6) { System.out.println("CT="+toString(result)); System.out.println(); } if (DEBUG) trace(OUT, "blockEncrypt()"); return result; } /** * Decrypt exactly one block of ciphertext. * * @param in The ciphertext. * @param inOffset Index of in from which to start considering data. * @param sessionKey The session key to use for decryption. * @return The plaintext generated from a ciphertext using the session key. */ public static byte[] blockDecrypt (byte[] in, int inOffset, Object sessionKey) { if (DEBUG) trace(IN, "blockDecrypt("+in+", "+inOffset+", "+sessionKey+")"); Object[] sk = (Object[]) sessionKey; // extract S-box and session key int[] sBox = (int[]) sk[0]; int[] sKey = (int[]) sk[1]; if (DEBUG && debuglevel > 6) System.out.println("CT="+toString(in, inOffset, BLOCK_SIZE)); int x2 = (in[inOffset++] & 0xFF) | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 24; int x3 = (in[inOffset++] & 0xFF) | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 24; int x0 = (in[inOffset++] & 0xFF) | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 24; int x1 = (in[inOffset++] & 0xFF) | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 24; x2 ^= sKey[OUTPUT_WHITEN ]; x3 ^= sKey[OUTPUT_WHITEN + 1]; x0 ^= sKey[OUTPUT_WHITEN + 2]; x1 ^= sKey[OUTPUT_WHITEN + 3]; if (DEBUG && debuglevel > 6) System.out.println("CTw="+intToString(x2)+intToString(x3)+intToString(x0)+intToString(x1)); int k = ROUND_SUBKEYS + 2*ROUNDS - 1; int t0, t1; for (int R = 0; R < ROUNDS; R += 2) { t0 = Fe32( sBox, x2, 0 ); t1 = Fe32( sBox, x3, 3 ); x1 ^= t0 + 2*t1 + sKey[k--]; x1 = x1 >>> 1 | x1 << 31; x0 = x0 << 1 | x0 >>> 31; x0 ^= t0 + t1 + sKey[k--]; if (DEBUG && debuglevel > 6) System.out.println("PT"+(ROUNDS-R)+"="+intToString(x2)+intToString(x3)+intToString(x0)+intToString(x1)); t0 = Fe32( sBox, x0, 0 ); t1 = Fe32( sBox, x1, 3 ); x3 ^= t0 + 2*t1 + sKey[k--]; x3 = x3 >>> 1 | x3 << 31; x2 = x2 << 1 | x2 >>> 31; x2 ^= t0 + t1 + sKey[k--]; if (DEBUG && debuglevel > 6) System.out.println("PT"+(ROUNDS-R-1)+"="+intToString(x2)+intToString(x3)+intToString(x0)+intToString(x1)); } x0 ^= sKey[INPUT_WHITEN ]; x1 ^= sKey[INPUT_WHITEN + 1]; x2 ^= sKey[INPUT_WHITEN + 2]; x3 ^= sKey[INPUT_WHITEN + 3]; if (DEBUG && debuglevel > 6) System.out.println("PTw="+intToString(x2)+intToString(x3)+intToString(x0)+intToString(x1)); byte[] result = new byte[] { (byte) x0, (byte)(x0 >>> 8), (byte)(x0 >>> 16), (byte)(x0 >>> 24), (byte) x1, (byte)(x1 >>> 8), (byte)(x1 >>> 16), (byte)(x1 >>> 24), (byte) x2, (byte)(x2 >>> 8), (byte)(x2 >>> 16), (byte)(x2 >>> 24), (byte) x3, (byte)(x3 >>> 8), (byte)(x3 >>> 16), (byte)(x3 >>> 24), }; if (DEBUG && debuglevel > 6) { System.out.println("PT="+toString(result)); System.out.println(); } if (DEBUG) trace(OUT, "blockDecrypt()"); return result; } /** A basic symmetric encryption/decryption test. */ public static boolean self_test() { return self_test(BLOCK_SIZE); } // own methods //........................................................................... private static final int b0( int x ) { return x & 0xFF; } private static final int b1( int x ) { return (x >>> 8) & 0xFF; } private static final int b2( int x ) { return (x >>> 16) & 0xFF; } private static final int b3( int x ) { return (x >>> 24) & 0xFF; } /** * Use (12, 8) Reed-Solomon code over GF(256) to produce a key S-box * 32-bit entity from two key material 32-bit entities. * * @param k0 1st 32-bit entity. * @param k1 2nd 32-bit entity. * @return Remainder polynomial generated using RS code */ private static final int RS_MDS_Encode( int k0, int k1) { int r = k1; for (int i = 0; i < 4; i++) // shift 1 byte at a time r = RS_rem( r ); r ^= k0; for (int i = 0; i < 4; i++) r = RS_rem( r ); return r; } /* * Reed-Solomon code parameters: (12, 8) reversible code:

*

    *   g(x) = x**4 + (a + 1/a) x**3 + a x**2 + (a + 1/a) x + 1
    * 
* where a = primitive root of field generator 0x14D */ private static final int RS_rem( int x ) { int b = (x >>> 24) & 0xFF; int g2 = ((b << 1) ^ ( (b & 0x80) != 0 ? RS_GF_FDBK : 0 )) & 0xFF; int g3 = (b >>> 1) ^ ( (b & 0x01) != 0 ? (RS_GF_FDBK >>> 1) : 0 ) ^ g2 ; int result = (x << 8) ^ (g3 << 24) ^ (g2 << 16) ^ (g3 << 8) ^ b; return result; } private static final int F32( int k64Cnt, int x, int[] k32 ) { int b0 = b0(x); int b1 = b1(x); int b2 = b2(x); int b3 = b3(x); int k0 = k32[0]; int k1 = k32[1]; int k2 = k32[2]; int k3 = k32[3]; int result = 0; switch (k64Cnt & 3) { case 1: result = MDS[0][(P[P_01][b0] & 0xFF) ^ b0(k0)] ^ MDS[1][(P[P_11][b1] & 0xFF) ^ b1(k0)] ^ MDS[2][(P[P_21][b2] & 0xFF) ^ b2(k0)] ^ MDS[3][(P[P_31][b3] & 0xFF) ^ b3(k0)]; break; case 0: // same as 4 b0 = (P[P_04][b0] & 0xFF) ^ b0(k3); b1 = (P[P_14][b1] & 0xFF) ^ b1(k3); b2 = (P[P_24][b2] & 0xFF) ^ b2(k3); b3 = (P[P_34][b3] & 0xFF) ^ b3(k3); case 3: b0 = (P[P_03][b0] & 0xFF) ^ b0(k2); b1 = (P[P_13][b1] & 0xFF) ^ b1(k2); b2 = (P[P_23][b2] & 0xFF) ^ b2(k2); b3 = (P[P_33][b3] & 0xFF) ^ b3(k2); case 2: // 128-bit keys (optimize for this case) result = MDS[0][(P[P_01][(P[P_02][b0] & 0xFF) ^ b0(k1)] & 0xFF) ^ b0(k0)] ^ MDS[1][(P[P_11][(P[P_12][b1] & 0xFF) ^ b1(k1)] & 0xFF) ^ b1(k0)] ^ MDS[2][(P[P_21][(P[P_22][b2] & 0xFF) ^ b2(k1)] & 0xFF) ^ b2(k0)] ^ MDS[3][(P[P_31][(P[P_32][b3] & 0xFF) ^ b3(k1)] & 0xFF) ^ b3(k0)]; break; } return result; } private static final int Fe32( int[] sBox, int x, int R ) { return sBox[ 2*_b(x, R ) ] ^ sBox[ 2*_b(x, R+1) + 1] ^ sBox[0x200 + 2*_b(x, R+2) ] ^ sBox[0x200 + 2*_b(x, R+3) + 1]; } private static final int _b( int x, int N) { int result = 0; switch (N%4) { case 0: result = b0(x); break; case 1: result = b1(x); break; case 2: result = b2(x); break; case 3: result = b3(x); break; } return result; } /** @return The length in bytes of the Algorithm input block. */ public static int blockSize() { return BLOCK_SIZE; } /** A basic symmetric encryption/decryption test for a given key size. */ private static boolean self_test (int keysize) { if (DEBUG) trace(IN, "self_test("+keysize+")"); boolean ok = false; try { byte[] kb = new byte[keysize]; byte[] pt = new byte[BLOCK_SIZE]; int i; for (i = 0; i < keysize; i++) kb[i] = (byte) i; for (i = 0; i < BLOCK_SIZE; i++) pt[i] = (byte) i; if (DEBUG && debuglevel > 6) { System.out.println("=========="); System.out.println(); System.out.println("KEYSIZE="+(8*keysize)); System.out.println("KEY="+toString(kb)); System.out.println(); } Object key = makeKey(kb); if (DEBUG && debuglevel > 6) { System.out.println("Intermediate Ciphertext Values (Encryption)"); System.out.println(); } byte[] ct = blockEncrypt(pt, 0, key); if (DEBUG && debuglevel > 6) { System.out.println("Intermediate Plaintext Values (Decryption)"); System.out.println(); } byte[] cpt = blockDecrypt(ct, 0, key); ok = areEqual(pt, cpt); if (!ok) throw new RuntimeException("Symmetric operation failed"); } catch (Exception x) { if (DEBUG && debuglevel > 0) { debug("Exception encountered during self-test: " + x.getMessage()); x.printStackTrace(); } } if (DEBUG && debuglevel > 0) debug("Self-test OK? " + ok); if (DEBUG) trace(OUT, "self_test()"); return ok; } // utility static methods (from cryptix.util.core ArrayUtil and Hex classes) //........................................................................... /** @return True iff the arrays have identical contents. */ private static boolean areEqual (byte[] a, byte[] b) { int aLength = a.length; if (aLength != b.length) return false; for (int i = 0; i < aLength; i++) if (a[i] != b[i]) return false; return true; } /** * Returns a string of 8 hexadecimal digits (most significant * digit first) corresponding to the integer n, which is * treated as unsigned. */ private static String intToString (int n) { char[] buf = new char[8]; for (int i = 7; i >= 0; i--) { buf[i] = HEX_DIGITS[n & 0x0F]; n >>>= 4; } return new String(buf); } /** * Returns a string of hexadecimal digits from a byte array. Each * byte is converted to 2 hex symbols. */ private static String toString (byte[] ba) { return toString(ba, 0, ba.length); } private static String toString (byte[] ba, int offset, int length) { char[] buf = new char[length * 2]; for (int i = offset, j = 0, k; i < offset+length; ) { k = ba[i++]; buf[j++] = HEX_DIGITS[(k >>> 4) & 0x0F]; buf[j++] = HEX_DIGITS[ k & 0x0F]; } return new String(buf); } // main(): use to generate the Intermediate Values KAT //........................................................................... public static void main (String[] args) { self_test(16); self_test(24); self_test(32); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy