com.gitee.huanminabc.utils_common.base.SnowIdUtil Maven / Gradle / Ivy
package com.gitee.huanminabc.utils_common.base;
/**
*
* 单例模式的雪花id
* @Description:
* Twitter_Snowflake
* SnowFlake的结构如下(每部分用-分开):
* 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000
* 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0
* 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
* 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69
* 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId
* 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号
* 加起来刚好64位,为一个Long型。
* SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生200万~500万ID左右。 和机器性能有关
* 我电脑500万id只需要1.249秒
*/
public class SnowIdUtil {
/**
* 私有的 静态内部类
*/
private static class SnowFlake {
/**
* 内部类对象(单例模式)
*/
private static final SnowFlake SNOW_FLAKE = new SnowFlake();
/**
* 起始的时间戳
*/
private final long START_TIMESTAMP = 1557489395327L;
/**
* 序列号占用位数
*/
private final long SEQUENCE_BIT = 12;
/**
* 机器标识占用位数
*/
private final long MACHINE_BIT = 10;
/**
* 时间戳位移位数
*/
private final long TIMESTAMP_LEFT = SEQUENCE_BIT + MACHINE_BIT;
/**
* 最大序列号 (4095)
*/
private final long MAX_SEQUENCE = ~(-1L << SEQUENCE_BIT);
/**
* 最大机器编号 (1023)
*/
private final long MAX_MACHINE_ID = ~(-1L << MACHINE_BIT);
/**
* 生成id机器标识部分
*/
private long machineIdPart;
/**
* 序列号
*/
private long sequence = 0L;
/**
* 上一次时间戳
*/
private long lastStamp = -1L;
/**
* 构造函数初始化机器编码
*/
private SnowFlake() {
//模拟这里获得本机机器编码
long localIp = 4321;
//localIp & MAX_MACHINE_ID最大不会超过1023,在左位移12位
machineIdPart = (localIp & MAX_MACHINE_ID) << SEQUENCE_BIT;
}
/**
* 获取雪花ID
*/
public synchronized long nextId() {
long currentStamp = timeGen();
//避免机器时钟回拨
while (currentStamp < lastStamp) {
// //服务器时钟被调整了,ID生成器停止服务.
throw new RuntimeException(String.format("时钟已经回拨. Refusing to generate id for %d milliseconds", lastStamp - currentStamp));
}
if (currentStamp == lastStamp) {
// 每次+1
sequence = (sequence + 1) & MAX_SEQUENCE;
// 毫秒内序列溢出
if (sequence == 0) {
// 阻塞到下一个毫秒,获得新的时间戳
currentStamp = getNextMill();
}
} else {
//不同毫秒内,序列号置0
sequence = 0L;
}
lastStamp = currentStamp;
//时间戳部分+机器标识部分+序列号部分
return (currentStamp - START_TIMESTAMP) << TIMESTAMP_LEFT | machineIdPart | sequence;
}
/**
* 阻塞到下一个毫秒,直到获得新的时间戳
*/
private long getNextMill() {
long mill = timeGen();
//
while (mill <= lastStamp) {
mill = timeGen();
}
return mill;
}
/**
* 返回以毫秒为单位的当前时间
*/
protected long timeGen() {
return System.currentTimeMillis();
}
}
/**
* 获取long类型雪花ID
*/
public static long uniqueLong() {
return SnowFlake.SNOW_FLAKE.nextId();
}
/**
* 获取String类型雪花ID
*/
public static String uniqueLongHex() {
return String.format("%016x", uniqueLong());
}
/**
* 场景数据库水平分库 水平分表 或者搜索引擎分片存储 ....
* 分布式-切片(用户的雪花id+取摸=分片位置)
* 假设你有3个分片那么就是取摸3 结果只能是 0 1 2
* 假设你有4个分片那么就是取摸4 结果只能是 0 1 2 3
* ................
* @param snowId 雪花id
* @param zoneSize
*/
public static Long slicePosition(long snowId,int zoneSize){
if (zoneSize==0) {
zoneSize=1;
}
if (snowId==0) {
return 0L;
}
return snowId%zoneSize;
}
}