All Downloads are FREE. Search and download functionalities are using the official Maven repository.

xdean.jex.extra.collection.LinkedList Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */

package xdean.jex.extra.collection;

import java.util.AbstractSequentialList;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.ConcurrentModificationException;
import java.util.Deque;
import java.util.Iterator;
import java.util.List;
import java.util.ListIterator;
import java.util.NoSuchElementException;
import java.util.Objects;
import java.util.Queue;
import java.util.Spliterator;
import java.util.Spliterators;
import java.util.function.Consumer;

import xdean.codecov.CodecovIgnore;

/**
 * Copy from system library, jdk 1.8.0_112u
 *
 *
 *
 * Doubly-linked list implementation of the {@code List} and {@code Deque} interfaces. Implements all optional list
 * operations, and permits all elements (including {@code null}).
 *
 * 

* All of the operations perform as could be expected for a doubly-linked list. Operations that index into the list will * traverse the list from the beginning or the end, whichever is closer to the specified index. * *

* Note that this implementation is not synchronized. If multiple threads access a linked list * concurrently, and at least one of the threads modifies the list structurally, it must be synchronized * externally. (A structural modification is any operation that adds or deletes one or more elements; merely setting the * value of an element is not a structural modification.) This is typically accomplished by synchronizing on some object * that naturally encapsulates the list. * * If no such object exists, the list should be "wrapped" using the {@link Collections#synchronizedList * Collections.synchronizedList} method. This is best done at creation time, to prevent accidental unsynchronized access * to the list: * *

 *   List list = Collections.synchronizedList(new LinkedList(...));
 * 
* *

* The iterators returned by this class's {@code iterator} and {@code listIterator} methods are fail-fast: if the * list is structurally modified at any time after the iterator is created, in any way except through the Iterator's own * {@code remove} or {@code add} methods, the iterator will throw a {@link ConcurrentModificationException}. Thus, in * the face of concurrent modification, the iterator fails quickly and cleanly, rather than risking arbitrary, * non-deterministic behavior at an undetermined time in the future. * *

* Note that the fail-fast behavior of an iterator cannot be guaranteed as it is, generally speaking, impossible to make * any hard guarantees in the presence of unsynchronized concurrent modification. Fail-fast iterators throw * {@code ConcurrentModificationException} on a best-effort basis. Therefore, it would be wrong to write a program that * depended on this exception for its correctness: the fail-fast behavior of iterators should be used only to detect * bugs. * *

* This class is a member of the Java Collections * Framework. * * @author Josh Bloch * @see List * @see ArrayList * @since 1.2 * @param the type of elements held in this collection */ @CodecovIgnore class LinkedList extends AbstractSequentialList implements List, Deque, Cloneable, java.io.Serializable { transient int size = 0; /** * Pointer to first node. Invariant: (first == null && last == null) || (first.prev == null && first.item != null) */ transient Node first; /** * Pointer to last node. Invariant: (first == null && last == null) || (last.next == null && last.item != null) */ transient Node last; /** * Constructs an empty list. */ public LinkedList() { } /** * Constructs a list containing the elements of the specified collection, in the order they are returned by the * collection's iterator. * * @param c the collection whose elements are to be placed into this list * @throws NullPointerException if the specified collection is null */ public LinkedList(Collection c) { this(); addAll(c); } /** * Links e as first element. */ private void linkFirst(E e) { final Node f = first; final Node newNode = new Node<>(null, e, f); first = newNode; if (f == null) { last = newNode; } else { f.prev = newNode; } size++; modCount++; } /** * Links e as last element. */ void linkLast(E e) { final Node l = last; final Node newNode = new Node<>(l, e, null); last = newNode; if (l == null) { first = newNode; } else { l.next = newNode; } size++; modCount++; } /** * Inserts element e before non-null Node succ. */ void linkBefore(E e, Node succ) { // assert succ != null; final Node pred = succ.prev; final Node newNode = new Node<>(pred, e, succ); succ.prev = newNode; if (pred == null) { first = newNode; } else { pred.next = newNode; } size++; modCount++; } /** * Unlinks non-null first node f. */ private E unlinkFirst(Node f) { // assert f == first && f != null; final E element = f.item; final Node next = f.next; f.item = null; f.next = null; // help GC first = next; if (next == null) { last = null; } else { next.prev = null; } size--; modCount++; return element; } /** * Unlinks non-null last node l. */ private E unlinkLast(Node l) { // assert l == last && l != null; final E element = l.item; final Node prev = l.prev; l.item = null; l.prev = null; // help GC last = prev; if (prev == null) { first = null; } else { prev.next = null; } size--; modCount++; return element; } /** * Unlinks non-null node x. */ E unlink(Node x) { // assert x != null; final E element = x.item; final Node next = x.next; final Node prev = x.prev; if (prev == null) { first = next; } else { prev.next = next; x.prev = null; } if (next == null) { last = prev; } else { next.prev = prev; x.next = null; } x.item = null; size--; modCount++; return element; } /** * Returns the first element in this list. * * @return the first element in this list * @throws NoSuchElementException if this list is empty */ @Override public E getFirst() { final Node f = first; if (f == null) { throw new NoSuchElementException(); } return f.item; } /** * Returns the last element in this list. * * @return the last element in this list * @throws NoSuchElementException if this list is empty */ @Override public E getLast() { final Node l = last; if (l == null) { throw new NoSuchElementException(); } return l.item; } /** * Removes and returns the first element from this list. * * @return the first element from this list * @throws NoSuchElementException if this list is empty */ @Override public E removeFirst() { final Node f = first; if (f == null) { throw new NoSuchElementException(); } return unlinkFirst(f); } /** * Removes and returns the last element from this list. * * @return the last element from this list * @throws NoSuchElementException if this list is empty */ @Override public E removeLast() { final Node l = last; if (l == null) { throw new NoSuchElementException(); } return unlinkLast(l); } /** * Inserts the specified element at the beginning of this list. * * @param e the element to add */ @Override public void addFirst(E e) { linkFirst(e); } /** * Appends the specified element to the end of this list. * *

* This method is equivalent to {@link #add}. * * @param e the element to add */ @Override public void addLast(E e) { linkLast(e); } /** * Returns {@code true} if this list contains the specified element. More formally, returns {@code true} if and only * if this list contains at least one element {@code e} such that * (o==null ? e==null : o.equals(e)). * * @param o element whose presence in this list is to be tested * @return {@code true} if this list contains the specified element */ @Override public boolean contains(Object o) { return indexOf(o) != -1; } /** * Returns the number of elements in this list. * * @return the number of elements in this list */ @Override public int size() { return size; } /** * Appends the specified element to the end of this list. * *

* This method is equivalent to {@link #addLast}. * * @param e element to be appended to this list * @return {@code true} (as specified by {@link Collection#add}) */ @Override public boolean add(E e) { linkLast(e); return true; } /** * Removes the first occurrence of the specified element from this list, if it is present. If this list does not * contain the element, it is unchanged. More formally, removes the element with the lowest index {@code i} such that * (o==null ? get(i)==null : o.equals(get(i))) (if such an element exists). Returns * {@code true} if this list contained the specified element (or equivalently, if this list changed as a result of the * call). * * @param o element to be removed from this list, if present * @return {@code true} if this list contained the specified element */ @Override public boolean remove(Object o) { if (o == null) { for (Node x = first; x != null; x = x.next) { if (x.item == null) { unlink(x); return true; } } } else { for (Node x = first; x != null; x = x.next) { if (o.equals(x.item)) { unlink(x); return true; } } } return false; } /** * Appends all of the elements in the specified collection to the end of this list, in the order that they are * returned by the specified collection's iterator. The behavior of this operation is undefined if the specified * collection is modified while the operation is in progress. (Note that this will occur if the specified collection * is this list, and it's nonempty.) * * @param c collection containing elements to be added to this list * @return {@code true} if this list changed as a result of the call * @throws NullPointerException if the specified collection is null */ @Override public boolean addAll(Collection c) { return addAll(size, c); } /** * Inserts all of the elements in the specified collection into this list, starting at the specified position. Shifts * the element currently at that position (if any) and any subsequent elements to the right (increases their indices). * The new elements will appear in the list in the order that they are returned by the specified collection's * iterator. * * @param index index at which to insert the first element from the specified collection * @param c collection containing elements to be added to this list * @return {@code true} if this list changed as a result of the call * @throws IndexOutOfBoundsException {@inheritDoc} * @throws NullPointerException if the specified collection is null */ @Override public boolean addAll(int index, Collection c) { checkPositionIndex(index); Object[] a = c.toArray(); int numNew = a.length; if (numNew == 0) { return false; } Node pred, succ; if (index == size) { succ = null; pred = last; } else { succ = node(index); pred = succ.prev; } for (Object o : a) { @SuppressWarnings("unchecked") E e = (E) o; Node newNode = new Node<>(pred, e, null); if (pred == null) { first = newNode; } else { pred.next = newNode; } pred = newNode; } if (succ == null) { last = pred; } else { pred.next = succ; succ.prev = pred; } size += numNew; modCount++; return true; } /** * Removes all of the elements from this list. The list will be empty after this call returns. */ @Override public void clear() { // Clearing all of the links between nodes is "unnecessary", but: // - helps a generational GC if the discarded nodes inhabit // more than one generation // - is sure to free memory even if there is a reachable Iterator for (Node x = first; x != null;) { Node next = x.next; x.item = null; x.next = null; x.prev = null; x = next; } first = last = null; size = 0; modCount++; } // Positional Access Operations /** * Returns the element at the specified position in this list. * * @param index index of the element to return * @return the element at the specified position in this list * @throws IndexOutOfBoundsException {@inheritDoc} */ @Override public E get(int index) { checkElementIndex(index); return node(index).item; } /** * Replaces the element at the specified position in this list with the specified element. * * @param index index of the element to replace * @param element element to be stored at the specified position * @return the element previously at the specified position * @throws IndexOutOfBoundsException {@inheritDoc} */ @Override public E set(int index, E element) { checkElementIndex(index); Node x = node(index); E oldVal = x.item; x.item = element; return oldVal; } /** * Inserts the specified element at the specified position in this list. Shifts the element currently at that position * (if any) and any subsequent elements to the right (adds one to their indices). * * @param index index at which the specified element is to be inserted * @param element element to be inserted * @throws IndexOutOfBoundsException {@inheritDoc} */ @Override public void add(int index, E element) { checkPositionIndex(index); if (index == size) { linkLast(element); } else { linkBefore(element, node(index)); } } /** * Removes the element at the specified position in this list. Shifts any subsequent elements to the left (subtracts * one from their indices). Returns the element that was removed from the list. * * @param index the index of the element to be removed * @return the element previously at the specified position * @throws IndexOutOfBoundsException {@inheritDoc} */ @Override public E remove(int index) { checkElementIndex(index); return unlink(node(index)); } /** * Tells if the argument is the index of an existing element. */ private boolean isElementIndex(int index) { return index >= 0 && index < size; } /** * Tells if the argument is the index of a valid position for an iterator or an add operation. */ private boolean isPositionIndex(int index) { return index >= 0 && index <= size; } /** * Constructs an IndexOutOfBoundsException detail message. Of the many possible refactorings of the error handling * code, this "outlining" performs best with both server and client VMs. */ private String outOfBoundsMsg(int index) { return "Index: " + index + ", Size: " + size; } private void checkElementIndex(int index) { if (!isElementIndex(index)) { throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } } private void checkPositionIndex(int index) { if (!isPositionIndex(index)) { throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } } /** * Returns the (non-null) Node at the specified element index. */ Node node(int index) { // assert isElementIndex(index); if (index < (size >> 1)) { Node x = first; for (int i = 0; i < index; i++) { x = x.next; } return x; } else { Node x = last; for (int i = size - 1; i > index; i--) { x = x.prev; } return x; } } // Search Operations /** * Returns the index of the first occurrence of the specified element in this list, or -1 if this list does not * contain the element. More formally, returns the lowest index {@code i} such that * (o==null ? get(i)==null : o.equals(get(i))), or -1 if there is no such index. * * @param o element to search for * @return the index of the first occurrence of the specified element in this list, or -1 if this list does not * contain the element */ @Override public int indexOf(Object o) { int index = 0; if (o == null) { for (Node x = first; x != null; x = x.next) { if (x.item == null) { return index; } index++; } } else { for (Node x = first; x != null; x = x.next) { if (o.equals(x.item)) { return index; } index++; } } return -1; } /** * Returns the index of the last occurrence of the specified element in this list, or -1 if this list does not contain * the element. More formally, returns the highest index {@code i} such that * (o==null ? get(i)==null : o.equals(get(i))), or -1 if there is no such index. * * @param o element to search for * @return the index of the last occurrence of the specified element in this list, or -1 if this list does not contain * the element */ @Override public int lastIndexOf(Object o) { int index = size; if (o == null) { for (Node x = last; x != null; x = x.prev) { index--; if (x.item == null) { return index; } } } else { for (Node x = last; x != null; x = x.prev) { index--; if (o.equals(x.item)) { return index; } } } return -1; } // Queue operations. /** * Retrieves, but does not remove, the head (first element) of this list. * * @return the head of this list, or {@code null} if this list is empty * @since 1.5 */ @Override public E peek() { final Node f = first; return (f == null) ? null : f.item; } /** * Retrieves, but does not remove, the head (first element) of this list. * * @return the head of this list * @throws NoSuchElementException if this list is empty * @since 1.5 */ @Override public E element() { return getFirst(); } /** * Retrieves and removes the head (first element) of this list. * * @return the head of this list, or {@code null} if this list is empty * @since 1.5 */ @Override public E poll() { final Node f = first; return (f == null) ? null : unlinkFirst(f); } /** * Retrieves and removes the head (first element) of this list. * * @return the head of this list * @throws NoSuchElementException if this list is empty * @since 1.5 */ @Override public E remove() { return removeFirst(); } /** * Adds the specified element as the tail (last element) of this list. * * @param e the element to add * @return {@code true} (as specified by {@link Queue#offer}) * @since 1.5 */ @Override public boolean offer(E e) { return add(e); } // Deque operations /** * Inserts the specified element at the front of this list. * * @param e the element to insert * @return {@code true} (as specified by {@link Deque#offerFirst}) * @since 1.6 */ @Override public boolean offerFirst(E e) { addFirst(e); return true; } /** * Inserts the specified element at the end of this list. * * @param e the element to insert * @return {@code true} (as specified by {@link Deque#offerLast}) * @since 1.6 */ @Override public boolean offerLast(E e) { addLast(e); return true; } /** * Retrieves, but does not remove, the first element of this list, or returns {@code null} if this list is empty. * * @return the first element of this list, or {@code null} if this list is empty * @since 1.6 */ @Override public E peekFirst() { final Node f = first; return (f == null) ? null : f.item; } /** * Retrieves, but does not remove, the last element of this list, or returns {@code null} if this list is empty. * * @return the last element of this list, or {@code null} if this list is empty * @since 1.6 */ @Override public E peekLast() { final Node l = last; return (l == null) ? null : l.item; } /** * Retrieves and removes the first element of this list, or returns {@code null} if this list is empty. * * @return the first element of this list, or {@code null} if this list is empty * @since 1.6 */ @Override public E pollFirst() { final Node f = first; return (f == null) ? null : unlinkFirst(f); } /** * Retrieves and removes the last element of this list, or returns {@code null} if this list is empty. * * @return the last element of this list, or {@code null} if this list is empty * @since 1.6 */ @Override public E pollLast() { final Node l = last; return (l == null) ? null : unlinkLast(l); } /** * Pushes an element onto the stack represented by this list. In other words, inserts the element at the front of this * list. * *

* This method is equivalent to {@link #addFirst}. * * @param e the element to push * @since 1.6 */ @Override public void push(E e) { addFirst(e); } /** * Pops an element from the stack represented by this list. In other words, removes and returns the first element of * this list. * *

* This method is equivalent to {@link #removeFirst()}. * * @return the element at the front of this list (which is the top of the stack represented by this list) * @throws NoSuchElementException if this list is empty * @since 1.6 */ @Override public E pop() { return removeFirst(); } /** * Removes the first occurrence of the specified element in this list (when traversing the list from head to tail). If * the list does not contain the element, it is unchanged. * * @param o element to be removed from this list, if present * @return {@code true} if the list contained the specified element * @since 1.6 */ @Override public boolean removeFirstOccurrence(Object o) { return remove(o); } /** * Removes the last occurrence of the specified element in this list (when traversing the list from head to tail). If * the list does not contain the element, it is unchanged. * * @param o element to be removed from this list, if present * @return {@code true} if the list contained the specified element * @since 1.6 */ @Override public boolean removeLastOccurrence(Object o) { if (o == null) { for (Node x = last; x != null; x = x.prev) { if (x.item == null) { unlink(x); return true; } } } else { for (Node x = last; x != null; x = x.prev) { if (o.equals(x.item)) { unlink(x); return true; } } } return false; } /** * Returns a list-iterator of the elements in this list (in proper sequence), starting at the specified position in * the list. Obeys the general contract of {@code List.listIterator(int)}. *

* * The list-iterator is fail-fast: if the list is structurally modified at any time after the Iterator is * created, in any way except through the list-iterator's own {@code remove} or {@code add} methods, the list-iterator * will throw a {@code ConcurrentModificationException}. Thus, in the face of concurrent modification, the iterator * fails quickly and cleanly, rather than risking arbitrary, non-deterministic behavior at an undetermined time in the * future. * * @param index index of the first element to be returned from the list-iterator (by a call to {@code next}) * @return a ListIterator of the elements in this list (in proper sequence), starting at the specified position in the * list * @throws IndexOutOfBoundsException {@inheritDoc} * @see List#listIterator(int) */ @Override public ListIterator listIterator(int index) { checkPositionIndex(index); return new ListItr(index); } private class ListItr implements ListIterator { private Node lastReturned; private Node next; private int nextIndex; private int expectedModCount = modCount; ListItr(int index) { // assert isPositionIndex(index); next = (index == size) ? null : node(index); nextIndex = index; } @Override public boolean hasNext() { return nextIndex < size; } @Override public E next() { checkForComodification(); if (!hasNext()) { throw new NoSuchElementException(); } lastReturned = next; next = next.next; nextIndex++; return lastReturned.item; } @Override public boolean hasPrevious() { return nextIndex > 0; } @Override public E previous() { checkForComodification(); if (!hasPrevious()) { throw new NoSuchElementException(); } lastReturned = next = (next == null) ? last : next.prev; nextIndex--; return lastReturned.item; } @Override public int nextIndex() { return nextIndex; } @Override public int previousIndex() { return nextIndex - 1; } @Override public void remove() { checkForComodification(); if (lastReturned == null) { throw new IllegalStateException(); } Node lastNext = lastReturned.next; unlink(lastReturned); if (next == lastReturned) { next = lastNext; } else { nextIndex--; } lastReturned = null; expectedModCount++; } @Override public void set(E e) { if (lastReturned == null) { throw new IllegalStateException(); } checkForComodification(); lastReturned.item = e; } @Override public void add(E e) { checkForComodification(); lastReturned = null; if (next == null) { linkLast(e); } else { linkBefore(e, next); } nextIndex++; expectedModCount++; } @Override public void forEachRemaining(Consumer action) { Objects.requireNonNull(action); while (modCount == expectedModCount && nextIndex < size) { action.accept(next.item); lastReturned = next; next = next.next; nextIndex++; } checkForComodification(); } final void checkForComodification() { if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } } static class Node { E item; Node next; Node prev; Node(Node prev, E element, Node next) { this.item = element; this.next = next; this.prev = prev; } } /** * @since 1.6 */ @Override public Iterator descendingIterator() { return new DescendingIterator(); } /** * Adapter to provide descending iterators via ListItr.previous */ private class DescendingIterator implements Iterator { private final ListItr itr = new ListItr(size()); @Override public boolean hasNext() { return itr.hasPrevious(); } @Override public E next() { return itr.previous(); } @Override public void remove() { itr.remove(); } } @SuppressWarnings("unchecked") private LinkedList superClone() { try { return (LinkedList) super.clone(); } catch (CloneNotSupportedException e) { throw new InternalError(e); } } /** * Returns a shallow copy of this {@code LinkedList}. (The elements themselves are not cloned.) * * @return a shallow copy of this {@code LinkedList} instance */ @Override public Object clone() { LinkedList clone = superClone(); // Put clone into "virgin" state clone.first = clone.last = null; clone.size = 0; clone.modCount = 0; // Initialize clone with our elements for (Node x = first; x != null; x = x.next) { clone.add(x.item); } return clone; } /** * Returns an array containing all of the elements in this list in proper sequence (from first to last element). * *

* The returned array will be "safe" in that no references to it are maintained by this list. (In other words, this * method must allocate a new array). The caller is thus free to modify the returned array. * *

* This method acts as bridge between array-based and collection-based APIs. * * @return an array containing all of the elements in this list in proper sequence */ @Override public Object[] toArray() { Object[] result = new Object[size]; int i = 0; for (Node x = first; x != null; x = x.next) { result[i++] = x.item; } return result; } /** * Returns an array containing all of the elements in this list in proper sequence (from first to last element); the * runtime type of the returned array is that of the specified array. If the list fits in the specified array, it is * returned therein. Otherwise, a new array is allocated with the runtime type of the specified array and the size of * this list. * *

* If the list fits in the specified array with room to spare (i.e., the array has more elements than the list), the * element in the array immediately following the end of the list is set to {@code null}. (This is useful in * determining the length of the list only if the caller knows that the list does not contain any null * elements.) * *

* Like the {@link #toArray()} method, this method acts as bridge between array-based and collection-based APIs. * Further, this method allows precise control over the runtime type of the output array, and may, under certain * circumstances, be used to save allocation costs. * *

* Suppose {@code x} is a list known to contain only strings. The following code can be used to dump the list into a * newly allocated array of {@code String}: * *

   * String[] y = x.toArray(new String[0]);
   * 
* * Note that {@code toArray(new Object[0])} is identical in function to {@code toArray()}. * * @param a the array into which the elements of the list are to be stored, if it is big enough; otherwise, a new * array of the same runtime type is allocated for this purpose. * @return an array containing the elements of the list * @throws ArrayStoreException if the runtime type of the specified array is not a supertype of the runtime type of * every element in this list * @throws NullPointerException if the specified array is null */ @Override @SuppressWarnings("unchecked") public T[] toArray(T[] a) { if (a.length < size) { a = (T[]) java.lang.reflect.Array.newInstance( a.getClass().getComponentType(), size); } int i = 0; Object[] result = a; for (Node x = first; x != null; x = x.next) { result[i++] = x.item; } if (a.length > size) { a[size] = null; } return a; } private static final long serialVersionUID = 876323262645176354L; /** * Saves the state of this {@code LinkedList} instance to a stream (that is, serializes it). * * @serialData The size of the list (the number of elements it contains) is emitted (int), followed by all of its * elements (each an Object) in the proper order. */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // Write out any hidden serialization magic s.defaultWriteObject(); // Write out size s.writeInt(size); // Write out all elements in the proper order. for (Node x = first; x != null; x = x.next) { s.writeObject(x.item); } } /** * Reconstitutes this {@code LinkedList} instance from a stream (that is, deserializes it). */ @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in any hidden serialization magic s.defaultReadObject(); // Read in size int size = s.readInt(); // Read in all elements in the proper order. for (int i = 0; i < size; i++) { linkLast((E) s.readObject()); } } /** * Creates a late-binding and fail-fast {@link Spliterator} * over the elements in this list. * *

* The {@code Spliterator} reports {@link Spliterator#SIZED} and {@link Spliterator#ORDERED}. Overriding * implementations should document the reporting of additional characteristic values. * * @implNote The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED} and implements {@code trySplit} * to permit limited parallelism.. * * @return a {@code Spliterator} over the elements in this list * @since 1.8 */ @Override public Spliterator spliterator() { return new LLSpliterator(this, -1, 0); } /** A customized variant of Spliterators.IteratorSpliterator */ static final class LLSpliterator implements Spliterator { static final int BATCH_UNIT = 1 << 10; // batch array size increment static final int MAX_BATCH = 1 << 25; // max batch array size; final LinkedList list; // null OK unless traversed Node current; // current node; null until initialized int est; // size estimate; -1 until first needed int expectedModCount; // initialized when est set int batch; // batch size for splits LLSpliterator(LinkedList list, int est, int expectedModCount) { this.list = list; this.est = est; this.expectedModCount = expectedModCount; } final int getEst() { int s; // force initialization final LinkedList lst; if ((s = est) < 0) { if ((lst = list) == null) { s = est = 0; } else { expectedModCount = lst.modCount; current = lst.first; s = est = lst.size; } } return s; } @Override public long estimateSize() { return getEst(); } @Override public Spliterator trySplit() { Node p; int s = getEst(); if (s > 1 && (p = current) != null) { int n = batch + BATCH_UNIT; if (n > s) { n = s; } if (n > MAX_BATCH) { n = MAX_BATCH; } Object[] a = new Object[n]; int j = 0; do { a[j++] = p.item; } while ((p = p.next) != null && j < n); current = p; batch = j; est = s - j; return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED); } return null; } @Override public void forEachRemaining(Consumer action) { Node p; int n; if (action == null) { throw new NullPointerException(); } if ((n = getEst()) > 0 && (p = current) != null) { current = null; est = 0; do { E e = p.item; p = p.next; action.accept(e); } while (p != null && --n > 0); } if (list.modCount != expectedModCount) { throw new ConcurrentModificationException(); } } @Override public boolean tryAdvance(Consumer action) { Node p; if (action == null) { throw new NullPointerException(); } if (getEst() > 0 && (p = current) != null) { --est; E e = p.item; current = p.next; action.accept(e); if (list.modCount != expectedModCount) { throw new ConcurrentModificationException(); } return true; } return false; } @Override public int characteristics() { return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy