generated.src.gnu.trove.TFloatDoubleHashMap Maven / Gradle / Ivy
///////////////////////////////////////////////////////////////////////////////
// Copyright (c) 2001, Eric D. Friedman All Rights Reserved.
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
///////////////////////////////////////////////////////////////////////////////
// THIS FILE IS AUTOGENERATED, PLEASE DO NOT EDIT OR ELSE
package gnu.trove;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
/**
* An open addressed Map implementation for float keys and double values.
*
* Created: Sun Nov 4 08:52:45 2001
*
* @author Eric D. Friedman
*/
public class TFloatDoubleHashMap extends TFloatHash {
/** the values of the map */
protected transient double[] _values;
/**
* Creates a new TFloatDoubleHashMap
instance with the default
* capacity and load factor.
*/
public TFloatDoubleHashMap() {
}
/**
* Creates a new TFloatDoubleHashMap
instance with a prime
* capacity equal to or greater than initialCapacity and
* with the default load factor.
*
* @param initialCapacity an int
value
*/
public TFloatDoubleHashMap(int initialCapacity) {
super(initialCapacity);
}
/**
* Creates a new TFloatDoubleHashMap
instance with a prime
* capacity equal to or greater than initialCapacity and
* with the specified load factor.
*
* @param initialCapacity an int
value
* @param loadFactor a float
value
*/
public TFloatDoubleHashMap(int initialCapacity, float loadFactor) {
super(initialCapacity, loadFactor);
}
/**
* Creates a new TFloatDoubleHashMap
instance with the default
* capacity and load factor.
* @param strategy used to compute hash codes and to compare keys.
*/
public TFloatDoubleHashMap(TFloatHashingStrategy strategy) {
super(strategy);
}
/**
* Creates a new TFloatDoubleHashMap
instance whose capacity
* is the next highest prime above initialCapacity + 1
* unless that value is already prime.
*
* @param initialCapacity an int
value
* @param strategy used to compute hash codes and to compare keys.
*/
public TFloatDoubleHashMap(int initialCapacity, TFloatHashingStrategy strategy) {
super(initialCapacity, strategy);
}
/**
* Creates a new TFloatDoubleHashMap
instance with a prime
* value at or near the specified capacity and load factor.
*
* @param initialCapacity used to find a prime capacity for the table.
* @param loadFactor used to calculate the threshold over which
* rehashing takes place.
* @param strategy used to compute hash codes and to compare keys.
*/
public TFloatDoubleHashMap(int initialCapacity, float loadFactor, TFloatHashingStrategy strategy) {
super(initialCapacity, loadFactor, strategy);
}
/**
* @return a deep clone of this collection
*/
@Override
public Object clone() {
TFloatDoubleHashMap m = (TFloatDoubleHashMap)super.clone();
m._values = _values.clone();
return m;
}
/**
* @return a TFloatDoubleIterator with access to this map's keys and values
*/
public TFloatDoubleIterator iterator() {
return new TFloatDoubleIterator(this);
}
/**
* initializes the hashtable to a prime capacity which is at least
* initialCapacity + 1.
*
* @param initialCapacity an int
value
* @return the actual capacity chosen
*/
@Override
protected int setUp(int initialCapacity) {
int capacity = super.setUp(initialCapacity);
_values = new double[capacity];
return capacity;
}
/**
* Inserts a key/value pair into the map.
*
* @param key an float
value
* @param value an double
value
* @return the previous value associated with key,
* or null if none was found.
*/
public double put(float key, double value) {
double previous = 0;
int index = insertionIndex(key);
boolean isNewMapping = true;
if (index < 0) {
index = -index -1;
previous = _values[index];
isNewMapping = false;
}
byte previousState = _states[index];
_set[index] = key;
_states[index] = FULL;
_values[index] = value;
if (isNewMapping) {
postInsertHook(previousState == FREE);
}
return previous;
}
/**
* rehashes the map to the new capacity.
*
* @param newCapacity an int
value
*/
@Override
protected void rehash(int newCapacity) {
int oldCapacity = _set.length;
float[] oldKeys = _set;
double[] oldVals = _values;
byte[] oldStates = _states;
_set = new float[newCapacity];
_values = new double[newCapacity];
_states = new byte[newCapacity];
for (int i = oldCapacity; i-- > 0;) {
if(oldStates[i] == FULL) {
float o = oldKeys[i];
int index = insertionIndex(o);
_set[index] = o;
_values[index] = oldVals[i];
_states[index] = FULL;
}
}
}
/**
* retrieves the value for key
*
* @param key an float
value
* @return the value of key or null if no such mapping exists.
*/
public double get(float key) {
int index = index(key);
return index < 0 ? 0 : _values[index];
}
/**
* Empties the map.
*
*/
@Override
public void clear() {
super.clear();
float[] keys = _set;
double[] vals = _values;
byte[] states = _states;
for (int i = keys.length; i-- > 0;) {
keys[i] = 0;
vals[i] = 0;
states[i] = FREE;
}
}
/**
* Deletes a key/value pair from the map.
*
* @param key an float
value
* @return an double
value
*/
public double remove(float key) {
double prev = 0;
int index = index(key);
if (index >= 0) {
prev = _values[index];
removeAt(index); // clear key,state; adjust size
}
return prev;
}
/**
* Compares this map with another map for equality of their stored
* entries.
*
* @param other an Object
value
* @return a boolean
value
*/
@Override
public boolean equals(Object other) {
if (! (other instanceof TFloatDoubleHashMap)) {
return false;
}
TFloatDoubleHashMap that = (TFloatDoubleHashMap)other;
if (that.size() != size()) {
return false;
}
return forEachEntry(new EqProcedure(that));
}
@Override
public int hashCode() {
HashProcedure p = new HashProcedure();
forEachEntry(p);
return p.getHashCode();
}
private final class HashProcedure implements TFloatDoubleProcedure {
private int h;
HashProcedure() {
}
public int getHashCode() {
return h;
}
public final boolean execute(float key, double value) {
h += _hashingStrategy.computeHashCode(key) ^ HashFunctions.hash(value);
return true;
}
}
private static final class EqProcedure implements TFloatDoubleProcedure {
private final TFloatDoubleHashMap _otherMap;
EqProcedure(TFloatDoubleHashMap otherMap) {
_otherMap = otherMap;
}
public final boolean execute(float key, double value) {
int index = _otherMap.index(key);
return index >= 0 && eq(value, _otherMap.get(key));
}
/**
* Compare two doubles for equality.
*/
private static boolean eq(double v1, double v2) {
return v1 == v2;
}
}
/**
* removes the mapping at index from the map.
*
* @param index an int
value
*/
@Override
protected void removeAt(int index) {
_values[index] = 0;
super.removeAt(index); // clear key, state; adjust size
}
/**
* Returns the values of the map.
*
* @return a Collection
value
*/
public double[] getValues() {
double[] vals = new double[size()];
double[] v = _values;
byte[] states = _states;
for (int i = v.length, j = 0; i-- > 0;) {
if (states[i] == FULL) {
vals[j++] = v[i];
}
}
return vals;
}
/**
* returns the keys of the map.
*
* @return a Set
value
*/
public float[] keys() {
float[] keys = new float[size()];
float[] k = _set;
byte[] states = _states;
for (int i = k.length, j = 0; i-- > 0;) {
if (states[i] == FULL) {
keys[j++] = k[i];
}
}
return keys;
}
/**
* checks for the presence of val in the values of the map.
*
* @param val an double
value
* @return a boolean
value
*/
public boolean containsValue(double val) {
byte[] states = _states;
double[] vals = _values;
for (int i = vals.length; i-- > 0;) {
if (states[i] == FULL && val == vals[i]) {
return true;
}
}
return false;
}
/**
* checks for the present of key in the keys of the map.
*
* @param key an float
value
* @return a boolean
value
*/
public boolean containsKey(float key) {
return contains(key);
}
/**
* Executes procedure for each key in the map.
*
* @param procedure a TFloatProcedure
value
* @return false if the loop over the keys terminated because
* the procedure returned false for some key.
*/
public boolean forEachKey(TFloatProcedure procedure) {
return forEach(procedure);
}
/**
* Executes procedure for each value in the map.
*
* @param procedure a TDoubleProcedure
value
* @return false if the loop over the values terminated because
* the procedure returned false for some value.
*/
public boolean forEachValue(TDoubleProcedure procedure) {
byte[] states = _states;
double[] values = _values;
for (int i = values.length; i-- > 0;) {
if (states[i] == FULL && ! procedure.execute(values[i])) {
return false;
}
}
return true;
}
/**
* Executes procedure for each key/value entry in the
* map.
*
* @param procedure a TFloatDoubleProcedure
value
* @return false if the loop over the entries terminated because
* the procedure returned false for some entry.
*/
public boolean forEachEntry(TFloatDoubleProcedure procedure) {
byte[] states = _states;
float[] keys = _set;
double[] values = _values;
for (int i = keys.length; i-- > 0;) {
if (states[i] == FULL && ! procedure.execute(keys[i],values[i])) {
return false;
}
}
return true;
}
/**
* Retains only those entries in the map for which the procedure
* returns a true value.
*
* @param procedure determines which entries to keep
* @return true if the map was modified.
*/
public boolean retainEntries(TFloatDoubleProcedure procedure) {
boolean modified = false;
byte[] states = _states;
float[] keys = _set;
double[] values = _values;
for (int i = keys.length; i-- > 0;) {
if (states[i] == FULL && ! procedure.execute(keys[i],values[i])) {
removeAt(i);
modified = true;
}
}
return modified;
}
/**
* Transform the values in this map using function.
*
* @param function a TDoubleFunction
value
*/
public void transformValues(TDoubleFunction function) {
byte[] states = _states;
double[] values = _values;
for (int i = values.length; i-- > 0;) {
if (states[i] == FULL) {
values[i] = function.execute(values[i]);
}
}
}
/**
* Increments the primitive value mapped to key by 1
*
* @param key the key of the value to increment
* @return true if a mapping was found and modified.
*/
public boolean increment(float key) {
return adjustValue(key, (double) 1);
}
/**
* Adjusts the primitive value mapped to key.
*
* @param key the key of the value to increment
* @param amount the amount to adjust the value by.
* @return true if a mapping was found and modified.
*/
public boolean adjustValue(float key, double amount) {
int index = index(key);
if (index < 0) {
return false;
} else {
_values[index] += amount;
return true;
}
}
private void writeObject(ObjectOutputStream stream)
throws IOException {
stream.defaultWriteObject();
// number of entries
stream.writeInt(_size);
SerializationProcedure writeProcedure = new SerializationProcedure(stream);
if (! forEachEntry(writeProcedure)) {
throw writeProcedure.exception;
}
}
private void readObject(ObjectInputStream stream)
throws IOException, ClassNotFoundException {
stream.defaultReadObject();
int size = stream.readInt();
setUp(size);
while (size-- > 0) {
float key = stream.readFloat();
double val = stream.readDouble();
put(key, val);
}
}
@Override
public String toString() {
final StringBuilder sb = new StringBuilder();
forEachEntry(new TFloatDoubleProcedure() {
public boolean execute(float key, double value) {
if (sb.length() != 0) {
sb.append(',').append(' ');
}
sb.append(key);
sb.append('=');
sb.append(value);
return true;
}
});
sb.append('}');
sb.insert(0, '{');
return sb.toString();
}
} // TFloatDoubleHashMap
© 2015 - 2025 Weber Informatics LLC | Privacy Policy