All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.Arrays Maven / Gradle / Ivy

package it.unimi.dsi.fastutil;

/*		 
 * Copyright (C) 2002-2016 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */

import it.unimi.dsi.fastutil.ints.IntComparator;

import java.util.ArrayList;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;

/** A class providing static methods and objects that do useful things with arrays.
 *
 * 

In addition to commodity methods, this class contains {@link Swapper}-based implementations * of {@linkplain #quickSort(int, int, IntComparator, Swapper) quicksort} and of * a stable, in-place {@linkplain #mergeSort(int, int, IntComparator, Swapper) mergesort}. These * generic sorting methods can be used to sort any kind of list, but they find their natural * usage, for instance, in sorting arrays in parallel. * * @see Arrays */ public class Arrays { private Arrays() {} /** This is a safe value used by {@link ArrayList} (as of Java 7) to avoid * throwing {@link OutOfMemoryError} on some JVMs. We adopt the same value. */ public static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /** Ensures that a range given by its first (inclusive) and last (exclusive) elements fits an array of given length. * *

This method may be used whenever an array range check is needed. * * @param arrayLength an array length. * @param from a start index (inclusive). * @param to an end index (inclusive). * @throws IllegalArgumentException if from is greater than to. * @throws ArrayIndexOutOfBoundsException if from or to are greater than arrayLength or negative. */ public static void ensureFromTo( final int arrayLength, final int from, final int to ) { if ( from < 0 ) throw new ArrayIndexOutOfBoundsException( "Start index (" + from + ") is negative" ); if ( from > to ) throw new IllegalArgumentException( "Start index (" + from + ") is greater than end index (" + to + ")" ); if ( to > arrayLength ) throw new ArrayIndexOutOfBoundsException( "End index (" + to + ") is greater than array length (" + arrayLength + ")" ); } /** Ensures that a range given by an offset and a length fits an array of given length. * *

This method may be used whenever an array range check is needed. * * @param arrayLength an array length. * @param offset a start index for the fragment * @param length a length (the number of elements in the fragment). * @throws IllegalArgumentException if length is negative. * @throws ArrayIndexOutOfBoundsException if offset is negative or offset+length is greater than arrayLength. */ public static void ensureOffsetLength( final int arrayLength, final int offset, final int length ) { if ( offset < 0 ) throw new ArrayIndexOutOfBoundsException( "Offset (" + offset + ") is negative" ); if ( length < 0 ) throw new IllegalArgumentException( "Length (" + length + ") is negative" ); if ( offset + length > arrayLength ) throw new ArrayIndexOutOfBoundsException( "Last index (" + ( offset + length ) + ") is greater than array length (" + arrayLength + ")" ); } /** * Transforms two consecutive sorted ranges into a single sorted range. The initial ranges are * [first..middle) and [middle..last), and the resulting range is * [first..last). Elements in the first input range will precede equal elements in * the second. */ private static void inPlaceMerge( final int from, int mid, final int to, final IntComparator comp, final Swapper swapper ) { if ( from >= mid || mid >= to ) return; if ( to - from == 2 ) { if ( comp.compare( mid, from ) < 0 ) swapper.swap( from, mid ); return; } int firstCut; int secondCut; if ( mid - from > to - mid ) { firstCut = from + ( mid - from ) / 2; secondCut = lowerBound( mid, to, firstCut, comp ); } else { secondCut = mid + ( to - mid ) / 2; firstCut = upperBound( from, mid, secondCut, comp ); } int first2 = firstCut; int middle2 = mid; int last2 = secondCut; if ( middle2 != first2 && middle2 != last2 ) { int first1 = first2; int last1 = middle2; while ( first1 < --last1 ) swapper.swap( first1++, last1 ); first1 = middle2; last1 = last2; while ( first1 < --last1 ) swapper.swap( first1++, last1 ); first1 = first2; last1 = last2; while ( first1 < --last1 ) swapper.swap( first1++, last1 ); } mid = firstCut + ( secondCut - mid ); inPlaceMerge( from, firstCut, mid, comp, swapper ); inPlaceMerge( mid, secondCut, to, comp, swapper ); } /** * Performs a binary search on an already-sorted range: finds the first position where an * element can be inserted without violating the ordering. Sorting is by a user-supplied * comparison function. * * @param from the index of the first element (inclusive) to be included in the binary search. * @param to the index of the last element (exclusive) to be included in the binary search. * @param pos the position of the element to be searched for. * @param comp the comparison function. * @return the largest index i such that, for every j in the range [first..i), * comp.compare(j, pos) is true. */ private static int lowerBound( int from, final int to, final int pos, final IntComparator comp ) { // if (comp==null) throw new NullPointerException(); int len = to - from; while ( len > 0 ) { int half = len / 2; int middle = from + half; if ( comp.compare( middle, pos ) < 0 ) { from = middle + 1; len -= half + 1; } else { len = half; } } return from; } /** * Performs a binary search on an already sorted range: finds the last position where an element * can be inserted without violating the ordering. Sorting is by a user-supplied comparison * function. * * @param from the index of the first element (inclusive) to be included in the binary search. * @param to the index of the last element (exclusive) to be included in the binary search. * @param pos the position of the element to be searched for. * @param comp the comparison function. * @return The largest index i such that, for every j in the range [first..i), * comp.compare(pos, j) is false. */ private static int upperBound( int from, final int mid, final int pos, final IntComparator comp ) { // if (comp==null) throw new NullPointerException(); int len = mid - from; while ( len > 0 ) { int half = len / 2; int middle = from + half; if ( comp.compare( pos, middle ) < 0 ) { len = half; } else { from = middle + 1; len -= half + 1; } } return from; } /** * Returns the index of the median of the three indexed chars. */ private static int med3( final int a, final int b, final int c, final IntComparator comp ) { int ab = comp.compare( a, b ); int ac = comp.compare( a, c ); int bc = comp.compare( b, c ); return ( ab < 0 ? ( bc < 0 ? b : ac < 0 ? c : a ) : ( bc > 0 ? b : ac > 0 ? c : a ) ); } private static final int MERGESORT_NO_REC = 16; /** Sorts the specified range of elements using the specified swapper and according to the order induced by the specified * comparator using mergesort. * *

This sort is guaranteed to be stable: equal elements will not be reordered as a result * of the sort. The sorting algorithm is an in-place mergesort that is significantly slower than a * standard mergesort, as its running time is O(n (log n)2), but it does not allocate additional memory; as a result, it can be * used as a generic sorting algorithm. * * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param c the comparator to determine the order of the generic data (arguments are positions). * @param swapper an object that knows how to swap the elements at any two positions. */ public static void mergeSort( final int from, final int to, final IntComparator c, final Swapper swapper ) { /* * We retain the same method signature as quickSort. Given only a comparator and swapper we * do not know how to copy and move elements from/to temporary arrays. Hence, in contrast to * the JDK mergesorts this is an "in-place" mergesort, i.e. does not allocate any temporary * arrays. A non-inplace mergesort would perhaps be faster in most cases, but would require * non-intuitive delegate objects... */ final int length = to - from; // Insertion sort on smallest arrays if ( length < MERGESORT_NO_REC ) { for ( int i = from; i < to; i++ ) { for ( int j = i; j > from && ( c.compare( j - 1, j ) > 0 ); j-- ) { swapper.swap( j, j - 1 ); } } return; } // Recursively sort halves int mid = ( from + to ) >>> 1; mergeSort( from, mid, c, swapper ); mergeSort( mid, to, c, swapper ); // If list is already sorted, nothing left to do. This is an // optimization that results in faster sorts for nearly ordered lists. if ( c.compare( mid - 1, mid ) <= 0 ) return; // Merge sorted halves inPlaceMerge( from, mid, to, c, swapper ); } /** Swaps two sequences of elements using a provided swapper. * * @param swapper the swapper. * @param a a position in {@code x}. * @param b another position in {@code x}. * @param n the number of elements to exchange starting at {@code a} and {@code b}. */ protected static void swap( final Swapper swapper, int a, int b, final int n ) { for ( int i = 0; i < n; i++, a++, b++ ) swapper.swap( a, b ); } private static final int QUICKSORT_NO_REC = 16; private static final int PARALLEL_QUICKSORT_NO_FORK = 8192; private static final int QUICKSORT_MEDIAN_OF_9 = 128; protected static class ForkJoinGenericQuickSort extends RecursiveAction { private static final long serialVersionUID = 1L; private final int from; private final int to; private final IntComparator comp; private final Swapper swapper; public ForkJoinGenericQuickSort( final int from, final int to, final IntComparator comp, final Swapper swapper ) { this.from = from; this.to = to; this.comp = comp; this.swapper = swapper; } @Override protected void compute() { final int len = to - from; if ( len < PARALLEL_QUICKSORT_NO_FORK ) { quickSort( from, to, comp, swapper ); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; int s = len / 8; l = med3( l, l + s, l + 2 * s, comp ); m = med3( m - s, m, m + s, comp ); n = med3( n - 2 * s, n - s, n, comp ); m = med3( l, m, n, comp ); // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while ( true ) { int comparison; while ( b <= c && ( ( comparison = comp.compare( b, m ) ) <= 0 ) ) { if ( comparison == 0 ) { // Fix reference to pivot if necessary if ( a == m ) m = b; else if ( b == m ) m = a; swapper.swap( a++, b ); } b++; } while ( c >= b && ( ( comparison = comp.compare( c, m ) ) >= 0 ) ) { if ( comparison == 0 ) { // Fix reference to pivot if necessary if ( c == m ) m = d; else if ( d == m ) m = c; swapper.swap( c, d-- ); } c--; } if ( b > c ) break; // Fix reference to pivot if necessary if ( b == m ) m = d; else if ( c == m ) m = c; swapper.swap( b++, c-- ); } // Swap partition elements back to middle s = Math.min( a - from, b - a ); swap( swapper, from, b - s, s ); s = Math.min( d - c, to - d - 1 ); swap( swapper, b, to - s, s ); // Recursively sort non-partition-elements int t; s = b - a; t = d - c; if ( s > 1 && t > 1 ) invokeAll( new ForkJoinGenericQuickSort( from, from + s, comp, swapper ), new ForkJoinGenericQuickSort( to - t, to, comp, swapper ) ); else if ( s > 1 ) invokeAll( new ForkJoinGenericQuickSort( from, from + s, comp, swapper ) ); else invokeAll( new ForkJoinGenericQuickSort( to - t, to, comp, swapper ) ); } } /** Sorts the specified range of elements using the specified swapper and according to the order induced by the specified * comparator using a parallel quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This implementation uses a {@link ForkJoinPool} executor service with {@link Runtime#availableProcessors()} parallel threads. * * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param comp the comparator to determine the order of the generic data. * @param swapper an object that knows how to swap the elements at any two positions. * */ public static void parallelQuickSort( final int from, final int to, final IntComparator comp, final Swapper swapper ) { final ForkJoinPool pool = new ForkJoinPool( Runtime.getRuntime().availableProcessors() ); pool.invoke( new ForkJoinGenericQuickSort( from, to, comp, swapper ) ); pool.shutdown(); } /** Sorts the specified range of elements using the specified swapper and according to the order induced by the specified * comparator using parallel quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This implementation uses a {@link ForkJoinPool} executor service with {@link Runtime#availableProcessors()} parallel threads. * * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param comp the comparator to determine the order of the generic data. * @param swapper an object that knows how to swap the elements at any two positions. * */ public static void quickSort( final int from, final int to, final IntComparator comp, final Swapper swapper ) { final int len = to - from; // Insertion sort on smallest arrays if ( len < QUICKSORT_NO_REC ) { for ( int i = from; i < to; i++ ) for ( int j = i; j > from && ( comp.compare( j - 1, j ) > 0 ); j-- ) { swapper.swap( j, j - 1 ); } return; } // Choose a partition element, v int m = from + len / 2; // Small arrays, middle element int l = from; int n = to - 1; if ( len > QUICKSORT_MEDIAN_OF_9 ) { // Big arrays, pseudomedian of 9 int s = len / 8; l = med3( l, l + s, l + 2 * s, comp ); m = med3( m - s, m, m + s, comp ); n = med3( n - 2 * s, n - s, n, comp ); } m = med3( l, m, n, comp ); // Mid-size, med of 3 // int v = x[m]; int a = from; int b = a; int c = to - 1; // Establish Invariant: v* (v)* v* int d = c; while ( true ) { int comparison; while ( b <= c && ( ( comparison = comp.compare( b, m ) ) <= 0 ) ) { if ( comparison == 0 ) { // Fix reference to pivot if necessary if ( a == m ) m = b; else if ( b == m ) m = a; swapper.swap( a++, b ); } b++; } while ( c >= b && ( ( comparison = comp.compare( c, m ) ) >= 0 ) ) { if ( comparison == 0 ) { // Fix reference to pivot if necessary if ( c == m ) m = d; else if ( d == m ) m = c; swapper.swap( c, d-- ); } c--; } if ( b > c ) break; // Fix reference to pivot if necessary if ( b == m ) m = d; else if ( c == m ) m = c; swapper.swap( b++, c-- ); } // Swap partition elements back to middle int s; s = Math.min( a - from, b - a ); swap( swapper, from, b - s, s ); s = Math.min( d - c, to - d - 1 ); swap( swapper, b, to - s, s ); // Recursively sort non-partition-elements if ( ( s = b - a ) > 1 ) quickSort( from, from + s, comp, swapper ); if ( ( s = d - c ) > 1 ) quickSort( to - s, to, comp, swapper ); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy