All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.objects.ObjectArrays Maven / Gradle / Ivy

There is a newer version: 2.0.5
Show newest version
/* Generic definitions */

/* Assertions (useful to generate conditional code) */

/* Current type and class (and size, if applicable) */
/* Value methods */

/* Interfaces (keys) */
/* Interfaces (values) */
/* Abstract implementations (keys) */
/* Abstract implementations (values) */

/* Static containers (keys) */
/* Static containers (values) */

/* Implementations */
/* Synchronized wrappers */
/* Unmodifiable wrappers */
/* Other wrappers */

/* Methods (keys) */
/* Methods (values) */
/* Methods (keys/values) */

/* Methods that have special names depending on keys (but the special names depend on values) */

/* Equality */
/* Object/Reference-only definitions (keys) */
/* Object/Reference-only definitions (values) */
/*		 
 * Copyright (C) 2002-2016 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 *
 *
 *
 * For the sorting and binary search code:
 *
 * Copyright (C) 1999 CERN - European Organization for Nuclear Research.
 *
 *   Permission to use, copy, modify, distribute and sell this software and
 *   its documentation for any purpose is hereby granted without fee,
 *   provided that the above copyright notice appear in all copies and that
 *   both that copyright notice and this permission notice appear in
 *   supporting documentation. CERN makes no representations about the
 *   suitability of this software for any purpose. It is provided "as is"
 *   without expressed or implied warranty. 
 */

package it.unimi.dsi.fastutil.objects;

import it.unimi.dsi.fastutil.Arrays;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.ints.IntArrays;

import java.util.Comparator;
import java.util.Random;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;

/**
 * A class providing static methods and objects that do useful things with
 * type-specific arrays.
 *
 * In particular, the ensureCapacity(), grow(),
 * trim() and setLength() methods allow to handle
 * arrays much like array lists. This can be very useful when efficiency (or
 * syntactic simplicity) reasons make array lists unsuitable.
 *
 * 

* Warning: if your array is not of type {@code Object[]}, * {@link #ensureCapacity(Object[],int,int)} and {@link #grow(Object[],int,int)} * will use {@linkplain java.lang.reflect.Array#newInstance(Class,int) * reflection} to preserve your array type. Reflection is * significantly slower than using new. This phenomenon is * particularly evident in the first growth phases of an array reallocated with * doubling (or similar) logic. * *

Sorting

* *

* There are several sorting methods available. The main theme is that of * letting you choose the sorting algorithm you prefer (i.e., trading stability * of mergesort for no memory allocation in quicksort). Several algorithms * provide a parallel version, that will use the * {@linkplain Runtime#availableProcessors() number of cores available}. * *

* All comparison-based algorithm have an implementation based on a * type-specific comparator. * *

* If you are fine with not knowing exactly which algorithm will be run (in * particular, not knowing exactly whether a support array will be allocated), * the dual-pivot parallel sorts in {@link java.util.Arrays} are about 50% * faster than the classical single-pivot implementation used here. * *

* In any case, if sorting time is important I suggest that you benchmark your * sorting load with your data distribution and on your architecture. * * @see java.util.Arrays */ public class ObjectArrays { private ObjectArrays() { } /** A static, final, empty array. */ public final static Object[] EMPTY_ARRAY = {}; /** * Creates a new array using a the given one as prototype. * *

* This method returns a new array of the given length whose element are of * the same class as of those of prototype. In case of an empty * array, it tries to return {@link #EMPTY_ARRAY}, if possible. * * @param prototype * an array that will be used to type the new one. * @param length * the length of the new array. * @return a new array of given type and length. */ @SuppressWarnings("unchecked") private static K[] newArray(final K[] prototype, final int length) { final Class klass = prototype.getClass(); if (klass == Object[].class) return (K[]) (length == 0 ? EMPTY_ARRAY : new Object[length]); return (K[]) java.lang.reflect.Array.newInstance( klass.getComponentType(), length); } /** * Ensures that an array can contain the given number of entries. * *

* If you cannot foresee whether this array will need again to be enlarged, * you should probably use grow() instead. * * @param array * an array. * @param length * the new minimum length for this array. * @return array, if it contains length entries or * more; otherwise, an array with length entries whose * first array.length entries are the same as those of * array. */ public static K[] ensureCapacity(final K[] array, final int length) { if (length > array.length) { final K t[] = newArray(array, length); System.arraycopy(array, 0, t, 0, array.length); return t; } return array; } /** * Ensures that an array can contain the given number of entries, preserving * just a part of the array. * * @param array * an array. * @param length * the new minimum length for this array. * @param preserve * the number of elements of the array that must be preserved in * case a new allocation is necessary. * @return array, if it can contain length entries * or more; otherwise, an array with length entries * whose first preserve entries are the same as those * of array. */ public static K[] ensureCapacity(final K[] array, final int length, final int preserve) { if (length > array.length) { final K t[] = newArray(array, length); System.arraycopy(array, 0, t, 0, preserve); return t; } return array; } /** * Grows the given array to the maximum between the given length and the * current length multiplied by two, provided that the given length is * larger than the current length. * *

* If you want complete control on the array growth, you should probably use * ensureCapacity() instead. * * @param array * an array. * @param length * the new minimum length for this array. * @return array, if it can contain length * entries; otherwise, an array with max(length, * array.length/φ) entries whose first * array.length entries are the same as those of * array. * */ public static K[] grow(final K[] array, final int length) { if (length > array.length) { final int newLength = (int) Math.max( Math.min(2L * array.length, Arrays.MAX_ARRAY_SIZE), length); final K t[] = newArray(array, newLength); System.arraycopy(array, 0, t, 0, array.length); return t; } return array; } /** * Grows the given array to the maximum between the given length and the * current length multiplied by two, provided that the given length is * larger than the current length, preserving just a part of the array. * *

* If you want complete control on the array growth, you should probably use * ensureCapacity() instead. * * @param array * an array. * @param length * the new minimum length for this array. * @param preserve * the number of elements of the array that must be preserved in * case a new allocation is necessary. * @return array, if it can contain length * entries; otherwise, an array with max(length, * array.length/φ) entries whose first * preserve entries are the same as those of * array. * */ public static K[] grow(final K[] array, final int length, final int preserve) { if (length > array.length) { final int newLength = (int) Math.max( Math.min(2L * array.length, Arrays.MAX_ARRAY_SIZE), length); final K t[] = newArray(array, newLength); System.arraycopy(array, 0, t, 0, preserve); return t; } return array; } /** * Trims the given array to the given length. * * @param array * an array. * @param length * the new maximum length for the array. * @return array, if it contains length entries or * less; otherwise, an array with length entries whose * entries are the same as the first length entries of * array. * */ public static K[] trim(final K[] array, final int length) { if (length >= array.length) return array; final K t[] = newArray(array, length); System.arraycopy(array, 0, t, 0, length); return t; } /** * Sets the length of the given array. * * @param array * an array. * @param length * the new length for the array. * @return array, if it contains exactly length * entries; otherwise, if it contains more than * length entries, an array with length * entries whose entries are the same as the first * length entries of array; otherwise, an * array with length entries whose first * array.length entries are the same as those of * array. * */ public static K[] setLength(final K[] array, final int length) { if (length == array.length) return array; if (length < array.length) return trim(array, length); return ensureCapacity(array, length); } /** * Returns a copy of a portion of an array. * * @param array * an array. * @param offset * the first element to copy. * @param length * the number of elements to copy. * @return a new array containing length elements of * array starting at offset. */ public static K[] copy(final K[] array, final int offset, final int length) { ensureOffsetLength(array, offset, length); final K[] a = newArray(array, length); System.arraycopy(array, offset, a, 0, length); return a; } /** * Returns a copy of an array. * * @param array * an array. * @return a copy of array. */ public static K[] copy(final K[] array) { return array.clone(); } /** * Fills the given array with the given value. * * @param array * an array. * @param value * the new value for all elements of the array. * @deprecated Please use the corresponding {@link java.util.Arrays} method. */ @Deprecated public static void fill(final K[] array, final K value) { int i = array.length; while (i-- != 0) array[i] = value; } /** * Fills a portion of the given array with the given value. * * @param array * an array. * @param from * the starting index of the portion to fill (inclusive). * @param to * the end index of the portion to fill (exclusive). * @param value * the new value for all elements of the specified portion of the * array. * @deprecated Please use the corresponding {@link java.util.Arrays} method. */ @Deprecated public static void fill(final K[] array, final int from, int to, final K value) { ensureFromTo(array, from, to); if (from == 0) while (to-- != 0) array[to] = value; else for (int i = from; i < to; i++) array[i] = value; } /** * Returns true if the two arrays are elementwise equal. * * @param a1 * an array. * @param a2 * another array. * @return true if the two arrays are of the same length, and their elements * are equal. * @deprecated Please use the corresponding {@link java.util.Arrays} method, * which is intrinsified in recent JVMs. */ @Deprecated public static boolean equals(final K[] a1, final K a2[]) { int i = a1.length; if (i != a2.length) return false; while (i-- != 0) if (!((a1[i]) == null ? (a2[i]) == null : (a1[i]).equals(a2[i]))) return false; return true; } /** * Ensures that a range given by its first (inclusive) and last (exclusive) * elements fits an array. * *

* This method may be used whenever an array range check is needed. * * @param a * an array. * @param from * a start index (inclusive). * @param to * an end index (exclusive). * @throws IllegalArgumentException * if from is greater than to. * @throws ArrayIndexOutOfBoundsException * if from or to are greater than the * array length or negative. */ public static void ensureFromTo(final K[] a, final int from, final int to) { Arrays.ensureFromTo(a.length, from, to); } /** * Ensures that a range given by an offset and a length fits an array. * *

* This method may be used whenever an array range check is needed. * * @param a * an array. * @param offset * a start index. * @param length * a length (the number of elements in the range). * @throws IllegalArgumentException * if length is negative. * @throws ArrayIndexOutOfBoundsException * if offset is negative or offset+ * length is greater than the array length. */ public static void ensureOffsetLength(final K[] a, final int offset, final int length) { Arrays.ensureOffsetLength(a.length, offset, length); } /** * Ensures that two arrays are of the same length. * * @param a * an array. * @param b * another array. * @throws IllegalArgumentException * if the two argument arrays are not of the same length. */ public static void ensureSameLength(final K[] a, final K[] b) { if (a.length != b.length) throw new IllegalArgumentException("Array size mismatch: " + a.length + " != " + b.length); } private static final int QUICKSORT_NO_REC = 16; private static final int PARALLEL_QUICKSORT_NO_FORK = 8192; private static final int QUICKSORT_MEDIAN_OF_9 = 128; private static final int MERGESORT_NO_REC = 16; /** * Swaps two elements of an anrray. * * @param x * an array. * @param a * a position in {@code x}. * @param b * another position in {@code x}. */ public static void swap(final K x[], final int a, final int b) { final K t = x[a]; x[a] = x[b]; x[b] = t; } /** * Swaps two sequences of elements of an array. * * @param x * an array. * @param a * a position in {@code x}. * @param b * another position in {@code x}. * @param n * the number of elements to exchange starting at {@code a} and * {@code b}. */ public static void swap(final K[] x, int a, int b, final int n) { for (int i = 0; i < n; i++, a++, b++) swap(x, a, b); } private static int med3(final K x[], final int a, final int b, final int c, Comparator comp) { final int ab = comp.compare(x[a], x[b]); final int ac = comp.compare(x[a], x[c]); final int bc = comp.compare(x[b], x[c]); return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a)); } private static void selectionSort(final K[] a, final int from, final int to, final Comparator comp) { for (int i = from; i < to - 1; i++) { int m = i; for (int j = i + 1; j < to; j++) if (comp.compare(a[j], a[m]) < 0) m = j; if (m != i) { final K u = a[i]; a[i] = a[m]; a[m] = u; } } } private static void insertionSort(final K[] a, final int from, final int to, final Comparator comp) { for (int i = from; ++i < to;) { K t = a[i]; int j = i; for (K u = a[j - 1]; comp.compare(t, u) < 0; u = a[--j - 1]) { a[j] = u; if (from == j - 1) { --j; break; } } a[j] = t; } } /** * Sorts the specified range of elements according to the order induced by * the specified comparator using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* Note that this implementation does not allocate any object, contrarily to * the implementation used to sort primitive types in * {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param x * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. * @param comp * the comparator to determine the sorting order. * */ public static void quickSort(final K[] x, final int from, final int to, final Comparator comp) { final int len = to - from; // Selection sort on smallest arrays if (len < QUICKSORT_NO_REC) { selectionSort(x, from, to, comp); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; if (len > QUICKSORT_MEDIAN_OF_9) { // Big arrays, pseudomedian of 9 int s = len / 8; l = med3(x, l, l + s, l + 2 * s, comp); m = med3(x, m - s, m, m + s, comp); n = med3(x, n - 2 * s, n - s, n, comp); } m = med3(x, l, m, n, comp); // Mid-size, med of 3 final K v = x[m]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = comp.compare(x[b], v)) <= 0) { if (comparison == 0) swap(x, a++, b); b++; } while (c >= b && (comparison = comp.compare(x[c], v)) >= 0) { if (comparison == 0) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int s; s = Math.min(a - from, b - a); swap(x, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(x, b, to - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) quickSort(x, from, from + s, comp); if ((s = d - c) > 1) quickSort(x, to - s, to, comp); } /** * Sorts an array according to the order induced by the specified comparator * using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* Note that this implementation does not allocate any object, contrarily to * the implementation used to sort primitive types in * {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param x * the array to be sorted. * @param comp * the comparator to determine the sorting order. * */ public static void quickSort(final K[] x, final Comparator comp) { quickSort(x, 0, x.length, comp); } protected static class ForkJoinQuickSortComp extends RecursiveAction { private static final long serialVersionUID = 1L; private final int from; private final int to; private final K[] x; private final Comparator comp; public ForkJoinQuickSortComp(final K[] x, final int from, final int to, final Comparator comp) { this.from = from; this.to = to; this.x = x; this.comp = comp; } @Override protected void compute() { final K[] x = this.x; final int len = to - from; if (len < PARALLEL_QUICKSORT_NO_FORK) { quickSort(x, from, to, comp); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; int s = len / 8; l = med3(x, l, l + s, l + 2 * s, comp); m = med3(x, m - s, m, m + s, comp); n = med3(x, n - 2 * s, n - s, n, comp); m = med3(x, l, m, n, comp); final K v = x[m]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = comp.compare(x[b], v)) <= 0) { if (comparison == 0) swap(x, a++, b); b++; } while (c >= b && (comparison = comp.compare(x[c], v)) >= 0) { if (comparison == 0) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int t; s = Math.min(a - from, b - a); swap(x, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(x, b, to - s, s); // Recursively sort non-partition-elements s = b - a; t = d - c; if (s > 1 && t > 1) invokeAll( new ForkJoinQuickSortComp(x, from, from + s, comp), new ForkJoinQuickSortComp(x, to - t, to, comp)); else if (s > 1) invokeAll(new ForkJoinQuickSortComp(x, from, from + s, comp)); else invokeAll(new ForkJoinQuickSortComp(x, to - t, to, comp)); } } /** * Sorts the specified range of elements according to the order induced by * the specified comparator using a parallel quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. * @param comp * the comparator to determine the sorting order. */ public static void parallelQuickSort(final K[] x, final int from, final int to, final Comparator comp) { if (to - from < PARALLEL_QUICKSORT_NO_FORK) quickSort(x, from, to, comp); else { final ForkJoinPool pool = new ForkJoinPool(Runtime.getRuntime() .availableProcessors()); pool.invoke(new ForkJoinQuickSortComp(x, from, to, comp)); pool.shutdown(); } } /** * Sorts an array according to the order induced by the specified comparator * using a parallel quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x * the array to be sorted. * @param comp * the comparator to determine the sorting order. */ public static void parallelQuickSort(final K[] x, final Comparator comp) { parallelQuickSort(x, 0, x.length, comp); } @SuppressWarnings("unchecked") private static int med3(final K x[], final int a, final int b, final int c) { final int ab = (((Comparable) (x[a])).compareTo(x[b])); final int ac = (((Comparable) (x[a])).compareTo(x[c])); final int bc = (((Comparable) (x[b])).compareTo(x[c])); return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a)); } @SuppressWarnings("unchecked") private static void selectionSort(final K[] a, final int from, final int to) { for (int i = from; i < to - 1; i++) { int m = i; for (int j = i + 1; j < to; j++) if ((((Comparable) (a[j])).compareTo(a[m]) < 0)) m = j; if (m != i) { final K u = a[i]; a[i] = a[m]; a[m] = u; } } } @SuppressWarnings("unchecked") private static void insertionSort(final K[] a, final int from, final int to) { for (int i = from; ++i < to;) { K t = a[i]; int j = i; for (K u = a[j - 1]; (((Comparable) (t)).compareTo(u) < 0); u = a[--j - 1]) { a[j] = u; if (from == j - 1) { --j; break; } } a[j] = t; } } /** * Sorts the specified range of elements according to the natural ascending * order using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* Note that this implementation does not allocate any object, contrarily to * the implementation used to sort primitive types in * {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param x * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ @SuppressWarnings("unchecked") public static void quickSort(final K[] x, final int from, final int to) { final int len = to - from; // Selection sort on smallest arrays if (len < QUICKSORT_NO_REC) { selectionSort(x, from, to); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; if (len > QUICKSORT_MEDIAN_OF_9) { // Big arrays, pseudomedian of 9 int s = len / 8; l = med3(x, l, l + s, l + 2 * s); m = med3(x, m - s, m, m + s); n = med3(x, n - 2 * s, n - s, n); } m = med3(x, l, m, n); // Mid-size, med of 3 final K v = x[m]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = (((Comparable) (x[b])).compareTo(v))) <= 0) { if (comparison == 0) swap(x, a++, b); b++; } while (c >= b && (comparison = (((Comparable) (x[c])).compareTo(v))) >= 0) { if (comparison == 0) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int s; s = Math.min(a - from, b - a); swap(x, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(x, b, to - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) quickSort(x, from, from + s); if ((s = d - c) > 1) quickSort(x, to - s, to); } /** * Sorts an array according to the natural ascending order using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* Note that this implementation does not allocate any object, contrarily to * the implementation used to sort primitive types in * {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param x * the array to be sorted. * */ public static void quickSort(final K[] x) { quickSort(x, 0, x.length); } protected static class ForkJoinQuickSort extends RecursiveAction { private static final long serialVersionUID = 1L; private final int from; private final int to; private final K[] x; public ForkJoinQuickSort(final K[] x, final int from, final int to) { this.from = from; this.to = to; this.x = x; } @Override @SuppressWarnings("unchecked") protected void compute() { final K[] x = this.x; final int len = to - from; if (len < PARALLEL_QUICKSORT_NO_FORK) { quickSort(x, from, to); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; int s = len / 8; l = med3(x, l, l + s, l + 2 * s); m = med3(x, m - s, m, m + s); n = med3(x, n - 2 * s, n - s, n); m = med3(x, l, m, n); final K v = x[m]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = (((Comparable) (x[b])).compareTo(v))) <= 0) { if (comparison == 0) swap(x, a++, b); b++; } while (c >= b && (comparison = (((Comparable) (x[c])).compareTo(v))) >= 0) { if (comparison == 0) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int t; s = Math.min(a - from, b - a); swap(x, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(x, b, to - s, s); // Recursively sort non-partition-elements s = b - a; t = d - c; if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSort(x, from, from + s), new ForkJoinQuickSort(x, to - t, to)); else if (s > 1) invokeAll(new ForkJoinQuickSort(x, from, from + s)); else invokeAll(new ForkJoinQuickSort(x, to - t, to)); } } /** * Sorts the specified range of elements according to the natural ascending * order using a parallel quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void parallelQuickSort(final K[] x, final int from, final int to) { if (to - from < PARALLEL_QUICKSORT_NO_FORK) quickSort(x, from, to); else { final ForkJoinPool pool = new ForkJoinPool(Runtime.getRuntime() .availableProcessors()); pool.invoke(new ForkJoinQuickSort(x, from, to)); pool.shutdown(); } } /** * Sorts an array according to the natural ascending order using a parallel * quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x * the array to be sorted. * */ public static void parallelQuickSort(final K[] x) { parallelQuickSort(x, 0, x.length); } @SuppressWarnings("unchecked") private static int med3Indirect(final int perm[], final K x[], final int a, final int b, final int c) { final K aa = x[perm[a]]; final K bb = x[perm[b]]; final K cc = x[perm[c]]; final int ab = (((Comparable) (aa)).compareTo(bb)); final int ac = (((Comparable) (aa)).compareTo(cc)); final int bc = (((Comparable) (bb)).compareTo(cc)); return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a)); } @SuppressWarnings("unchecked") private static void insertionSortIndirect(final int[] perm, final K[] a, final int from, final int to) { for (int i = from; ++i < to;) { int t = perm[i]; int j = i; for (int u = perm[j - 1]; (((Comparable) (a[t])).compareTo(a[u]) < 0); u = perm[--j - 1]) { perm[j] = u; if (from == j - 1) { --j; break; } } perm[j] = t; } } /** * Sorts the specified range of elements according to the natural ascending * order using indirect quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This method implement an indirect sort. The elements of * perm (which must be exactly the numbers in the interval * [0..perm.length)) will be permuted so that * x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ]. * *

* Note that this implementation does not allocate any object, contrarily to * the implementation used to sort primitive types in * {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param perm * a permutation array indexing {@code x}. * @param x * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ @SuppressWarnings("unchecked") public static void quickSortIndirect(final int[] perm, final K[] x, final int from, final int to) { final int len = to - from; // Selection sort on smallest arrays if (len < QUICKSORT_NO_REC) { insertionSortIndirect(perm, x, from, to); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; if (len > QUICKSORT_MEDIAN_OF_9) { // Big arrays, pseudomedian of 9 int s = len / 8; l = med3Indirect(perm, x, l, l + s, l + 2 * s); m = med3Indirect(perm, x, m - s, m, m + s); n = med3Indirect(perm, x, n - 2 * s, n - s, n); } m = med3Indirect(perm, x, l, m, n); // Mid-size, med of 3 final K v = x[perm[m]]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = (((Comparable) (x[perm[b]])) .compareTo(v))) <= 0) { if (comparison == 0) IntArrays.swap(perm, a++, b); b++; } while (c >= b && (comparison = (((Comparable) (x[perm[c]])) .compareTo(v))) >= 0) { if (comparison == 0) IntArrays.swap(perm, c, d--); c--; } if (b > c) break; IntArrays.swap(perm, b++, c--); } // Swap partition elements back to middle int s; s = Math.min(a - from, b - a); IntArrays.swap(perm, from, b - s, s); s = Math.min(d - c, to - d - 1); IntArrays.swap(perm, b, to - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) quickSortIndirect(perm, x, from, from + s); if ((s = d - c) > 1) quickSortIndirect(perm, x, to - s, to); } /** * Sorts an array according to the natural ascending order using indirect * quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This method implement an indirect sort. The elements of * perm (which must be exactly the numbers in the interval * [0..perm.length)) will be permuted so that * x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ]. * *

* Note that this implementation does not allocate any object, contrarily to * the implementation used to sort primitive types in * {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param perm * a permutation array indexing {@code x}. * @param x * the array to be sorted. */ public static void quickSortIndirect(final int perm[], final K[] x) { quickSortIndirect(perm, x, 0, x.length); } protected static class ForkJoinQuickSortIndirect extends RecursiveAction { private static final long serialVersionUID = 1L; private final int from; private final int to; private final int[] perm; private final K[] x; public ForkJoinQuickSortIndirect(final int perm[], final K[] x, final int from, final int to) { this.from = from; this.to = to; this.x = x; this.perm = perm; } @Override @SuppressWarnings("unchecked") protected void compute() { final K[] x = this.x; final int len = to - from; if (len < PARALLEL_QUICKSORT_NO_FORK) { quickSortIndirect(perm, x, from, to); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; int s = len / 8; l = med3Indirect(perm, x, l, l + s, l + 2 * s); m = med3Indirect(perm, x, m - s, m, m + s); n = med3Indirect(perm, x, n - 2 * s, n - s, n); m = med3Indirect(perm, x, l, m, n); final K v = x[perm[m]]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = (((Comparable) (x[perm[b]])) .compareTo(v))) <= 0) { if (comparison == 0) IntArrays.swap(perm, a++, b); b++; } while (c >= b && (comparison = (((Comparable) (x[perm[c]])) .compareTo(v))) >= 0) { if (comparison == 0) IntArrays.swap(perm, c, d--); c--; } if (b > c) break; IntArrays.swap(perm, b++, c--); } // Swap partition elements back to middle int t; s = Math.min(a - from, b - a); IntArrays.swap(perm, from, b - s, s); s = Math.min(d - c, to - d - 1); IntArrays.swap(perm, b, to - s, s); // Recursively sort non-partition-elements s = b - a; t = d - c; if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSortIndirect(perm, x, from, from + s), new ForkJoinQuickSortIndirect(perm, x, to - t, to)); else if (s > 1) invokeAll(new ForkJoinQuickSortIndirect(perm, x, from, from + s)); else invokeAll(new ForkJoinQuickSortIndirect(perm, x, to - t, to)); } } /** * Sorts the specified range of elements according to the natural ascending * order using a parallel indirect quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This method implement an indirect sort. The elements of * perm (which must be exactly the numbers in the interval * [0..perm.length)) will be permuted so that * x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ]. * *

* This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param perm * a permutation array indexing {@code x}. * @param x * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void parallelQuickSortIndirect(final int[] perm, final K[] x, final int from, final int to) { if (to - from < PARALLEL_QUICKSORT_NO_FORK) quickSortIndirect(perm, x, from, to); else { final ForkJoinPool pool = new ForkJoinPool(Runtime.getRuntime() .availableProcessors()); pool.invoke(new ForkJoinQuickSortIndirect(perm, x, from, to)); pool.shutdown(); } } /** * Sorts an array according to the natural ascending order using a parallel * indirect quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This method implement an indirect sort. The elements of * perm (which must be exactly the numbers in the interval * [0..perm.length)) will be permuted so that * x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ]. * *

* This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param perm * a permutation array indexing {@code x}. * @param x * the array to be sorted. * */ public static void parallelQuickSortIndirect(final int perm[], final K[] x) { parallelQuickSortIndirect(perm, x, 0, x.length); } /** * Stabilizes a permutation. * *

* This method can be used to stabilize the permutation generated by an * indirect sorting, assuming that initially the permutation array was in * ascending order (e.g., the identity, as usually happens). This method * scans the permutation, and for each non-singleton block of elements with * the same associated values in {@code x}, permutes them in ascending order. * The resulting permutation corresponds to a stable sort. * *

* Usually combining an unstable indirect sort and this method is more * efficient than using a stable sort, as most stable sort algorithms * require a support array. * *

* More precisely, assuming that * x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ], after stabilization * we will also have that x[ perm[ i ] ] = x[ perm[ i + 1 ] ] * implies perm[ i ] ≤ perm[ i + 1 ]. * * @param perm * a permutation array indexing {@code x} so that it is sorted. * @param x * the sorted array to be stabilized. * @param from * the index of the first element (inclusive) to be stabilized. * @param to * the index of the last element (exclusive) to be stabilized. */ public static void stabilize(final int perm[], final K[] x, final int from, final int to) { int curr = from; for (int i = from + 1; i < to; i++) { if (x[perm[i]] != x[perm[curr]]) { if (i - curr > 1) IntArrays.parallelQuickSort(perm, curr, i); curr = i; } } if (to - curr > 1) IntArrays.parallelQuickSort(perm, curr, to); } /** * Stabilizes a permutation. * *

* This method can be used to stabilize the permutation generated by an * indirect sorting, assuming that initially the permutation array was in * ascending order (e.g., the identity, as usually happens). This method * scans the permutation, and for each non-singleton block of elements with * the same associated values in {@code x}, permutes them in ascending order. * The resulting permutation corresponds to a stable sort. * *

* Usually combining an unstable indirect sort and this method is more * efficient than using a stable sort, as most stable sort algorithms * require a support array. * *

* More precisely, assuming that * x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ], after stabilization * we will also have that x[ perm[ i ] ] = x[ perm[ i + 1 ] ] * implies perm[ i ] ≤ perm[ i + 1 ]. * * @param perm * a permutation array indexing {@code x} so that it is sorted. * @param x * the sorted array to be stabilized. */ public static void stabilize(final int perm[], final K[] x) { stabilize(perm, x, 0, perm.length); } @SuppressWarnings("unchecked") private static int med3(final K x[], final K[] y, final int a, final int b, final int c) { int t; final int ab = (t = (((Comparable) (x[a])).compareTo(x[b]))) == 0 ? (((Comparable) (y[a])).compareTo(y[b])) : t; final int ac = (t = (((Comparable) (x[a])).compareTo(x[c]))) == 0 ? (((Comparable) (y[a])).compareTo(y[c])) : t; final int bc = (t = (((Comparable) (x[b])).compareTo(x[c]))) == 0 ? (((Comparable) (y[b])).compareTo(y[c])) : t; return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a)); } private static void swap(final K x[], final K[] y, final int a, final int b) { final K t = x[a]; final K u = y[a]; x[a] = x[b]; y[a] = y[b]; x[b] = t; y[b] = u; } private static void swap(final K[] x, final K[] y, int a, int b, final int n) { for (int i = 0; i < n; i++, a++, b++) swap(x, y, a, b); } @SuppressWarnings("unchecked") private static void selectionSort(final K[] a, final K[] b, final int from, final int to) { for (int i = from; i < to - 1; i++) { int m = i, u; for (int j = i + 1; j < to; j++) if ((u = (((Comparable) (a[j])).compareTo(a[m]))) < 0 || u == 0 && (((Comparable) (b[j])).compareTo(b[m]) < 0)) m = j; if (m != i) { K t = a[i]; a[i] = a[m]; a[m] = t; t = b[i]; b[i] = b[m]; b[m] = t; } } } /** * Sorts the specified range of elements of two arrays according to the * natural lexicographical ascending order using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This method implements a lexicographical sorting of the * arguments. Pairs of elements in the same position in the two provided * arrays will be considered a single key, and permuted accordingly. In the * end, either x[ i ] < x[ i + 1 ] or x[ i ] * == x[ i + 1 ] and y[ i ] ≤ y[ i + 1 ]. * * @param x * the first array to be sorted. * @param y * the second array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ @SuppressWarnings("unchecked") public static void quickSort(final K[] x, final K[] y, final int from, final int to) { final int len = to - from; if (len < QUICKSORT_NO_REC) { selectionSort(x, y, from, to); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; if (len > QUICKSORT_MEDIAN_OF_9) { // Big arrays, pseudomedian of 9 int s = len / 8; l = med3(x, y, l, l + s, l + 2 * s); m = med3(x, y, m - s, m, m + s); n = med3(x, y, n - 2 * s, n - s, n); } m = med3(x, y, l, m, n); // Mid-size, med of 3 final K v = x[m], w = y[m]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while (true) { int comparison, t; while (b <= c && (comparison = (t = (((Comparable) (x[b])) .compareTo(v))) == 0 ? (((Comparable) (y[b])) .compareTo(w)) : t) <= 0) { if (comparison == 0) swap(x, y, a++, b); b++; } while (c >= b && (comparison = (t = (((Comparable) (x[c])) .compareTo(v))) == 0 ? (((Comparable) (y[c])) .compareTo(w)) : t) >= 0) { if (comparison == 0) swap(x, y, c, d--); c--; } if (b > c) break; swap(x, y, b++, c--); } // Swap partition elements back to middle int s; s = Math.min(a - from, b - a); swap(x, y, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(x, y, b, to - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) quickSort(x, y, from, from + s); if ((s = d - c) > 1) quickSort(x, y, to - s, to); } /** * Sorts two arrays according to the natural lexicographical ascending order * using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This method implements a lexicographical sorting of the * arguments. Pairs of elements in the same position in the two provided * arrays will be considered a single key, and permuted accordingly. In the * end, either x[ i ] < x[ i + 1 ] or x[ i ] * == x[ i + 1 ] and y[ i ] ≤ y[ i + 1 ]. * * @param x * the first array to be sorted. * @param y * the second array to be sorted. */ public static void quickSort(final K[] x, final K[] y) { ensureSameLength(x, y); quickSort(x, y, 0, x.length); } protected static class ForkJoinQuickSort2 extends RecursiveAction { private static final long serialVersionUID = 1L; private final int from; private final int to; private final K[] x, y; public ForkJoinQuickSort2(final K[] x, final K[] y, final int from, final int to) { this.from = from; this.to = to; this.x = x; this.y = y; } @Override @SuppressWarnings("unchecked") protected void compute() { final K[] x = this.x; final K[] y = this.y; final int len = to - from; if (len < PARALLEL_QUICKSORT_NO_FORK) { quickSort(x, y, from, to); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; int s = len / 8; l = med3(x, y, l, l + s, l + 2 * s); m = med3(x, y, m - s, m, m + s); n = med3(x, y, n - 2 * s, n - s, n); m = med3(x, y, l, m, n); final K v = x[m], w = y[m]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while (true) { int comparison, t; while (b <= c && (comparison = (t = (((Comparable) (x[b])) .compareTo(v))) == 0 ? (((Comparable) (y[b])).compareTo(w)) : t) <= 0) { if (comparison == 0) swap(x, y, a++, b); b++; } while (c >= b && (comparison = (t = (((Comparable) (x[c])) .compareTo(v))) == 0 ? (((Comparable) (y[c])).compareTo(w)) : t) >= 0) { if (comparison == 0) swap(x, y, c, d--); c--; } if (b > c) break; swap(x, y, b++, c--); } // Swap partition elements back to middle int t; s = Math.min(a - from, b - a); swap(x, y, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(x, y, b, to - s, s); s = b - a; t = d - c; // Recursively sort non-partition-elements if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSort2(x, y, from, from + s), new ForkJoinQuickSort2(x, y, to - t, to)); else if (s > 1) invokeAll(new ForkJoinQuickSort2(x, y, from, from + s)); else invokeAll(new ForkJoinQuickSort2(x, y, to - t, to)); } } /** * Sorts the specified range of elements of two arrays according to the * natural lexicographical ascending order using a parallel quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This method implements a lexicographical sorting of the * arguments. Pairs of elements in the same position in the two provided * arrays will be considered a single key, and permuted accordingly. In the * end, either x[ i ] < x[ i + 1 ] or x[ i ] * == x[ i + 1 ] and y[ i ] ≤ y[ i + 1 ]. * *

* This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x * the first array to be sorted. * @param y * the second array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void parallelQuickSort(final K[] x, final K[] y, final int from, final int to) { if (to - from < PARALLEL_QUICKSORT_NO_FORK) quickSort(x, y, from, to); final ForkJoinPool pool = new ForkJoinPool(Runtime.getRuntime() .availableProcessors()); pool.invoke(new ForkJoinQuickSort2(x, y, from, to)); pool.shutdown(); } /** * Sorts two arrays according to the natural lexicographical ascending order * using a parallel quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This method implements a lexicographical sorting of the * arguments. Pairs of elements in the same position in the two provided * arrays will be considered a single key, and permuted accordingly. In the * end, either x[ i ] < x[ i + 1 ] or x[ i ] * == x[ i + 1 ] and y[ i ] ≤ y[ i + 1 ]. * *

* This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x * the first array to be sorted. * @param y * the second array to be sorted. */ public static void parallelQuickSort(final K[] x, final K[] y) { ensureSameLength(x, y); parallelQuickSort(x, y, 0, x.length); } /** * Sorts the specified range of elements according to the natural ascending * order using mergesort, using a given pre-filled support array. * *

* This sort is guaranteed to be stable: equal elements will not be * reordered as a result of the sort. Moreover, no support arrays will be * allocated. * * @param a * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. * @param supp * a support array containing at least to elements, * and whose entries are identical to those of {@code a} in the * specified range. */ @SuppressWarnings("unchecked") public static void mergeSort(final K a[], final int from, final int to, final K supp[]) { int len = to - from; // Insertion sort on smallest arrays if (len < MERGESORT_NO_REC) { insertionSort(a, from, to); return; } // Recursively sort halves of a into supp final int mid = (from + to) >>> 1; mergeSort(supp, from, mid, a); mergeSort(supp, mid, to, a); // If list is already sorted, just copy from supp to a. This is an // optimization that results in faster sorts for nearly ordered lists. if ((((Comparable) (supp[mid - 1])).compareTo(supp[mid]) <= 0)) { System.arraycopy(supp, from, a, from, len); return; } // Merge sorted halves (now in supp) into a for (int i = from, p = from, q = mid; i < to; i++) { if (q >= to || p < mid && (((Comparable) (supp[p])).compareTo(supp[q]) <= 0)) a[i] = supp[p++]; else a[i] = supp[q++]; } } /** * Sorts the specified range of elements according to the natural ascending * order using mergesort. * *

* This sort is guaranteed to be stable: equal elements will not be * reordered as a result of the sort. An array as large as a * will be allocated by this method. * * @param a * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void mergeSort(final K a[], final int from, final int to) { mergeSort(a, from, to, a.clone()); } /** * Sorts an array according to the natural ascending order using mergesort. * *

* This sort is guaranteed to be stable: equal elements will not be * reordered as a result of the sort. An array as large as a * will be allocated by this method. * * @param a * the array to be sorted. */ public static void mergeSort(final K a[]) { mergeSort(a, 0, a.length); } /** * Sorts the specified range of elements according to the order induced by * the specified comparator using mergesort, using a given pre-filled * support array. * *

* This sort is guaranteed to be stable: equal elements will not be * reordered as a result of the sort. Moreover, no support arrays will be * allocated. * * @param a * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. * @param comp * the comparator to determine the sorting order. * @param supp * a support array containing at least to elements, * and whose entries are identical to those of {@code a} in the * specified range. */ public static void mergeSort(final K a[], final int from, final int to, Comparator comp, final K supp[]) { int len = to - from; // Insertion sort on smallest arrays if (len < MERGESORT_NO_REC) { insertionSort(a, from, to, comp); return; } // Recursively sort halves of a into supp final int mid = (from + to) >>> 1; mergeSort(supp, from, mid, comp, a); mergeSort(supp, mid, to, comp, a); // If list is already sorted, just copy from supp to a. This is an // optimization that results in faster sorts for nearly ordered lists. if (comp.compare(supp[mid - 1], supp[mid]) <= 0) { System.arraycopy(supp, from, a, from, len); return; } // Merge sorted halves (now in supp) into a for (int i = from, p = from, q = mid; i < to; i++) { if (q >= to || p < mid && comp.compare(supp[p], supp[q]) <= 0) a[i] = supp[p++]; else a[i] = supp[q++]; } } /** * Sorts the specified range of elements according to the order induced by * the specified comparator using mergesort. * *

* This sort is guaranteed to be stable: equal elements will not be * reordered as a result of the sort. An array as large as a * will be allocated by this method. * * @param a * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. * @param comp * the comparator to determine the sorting order. */ public static void mergeSort(final K a[], final int from, final int to, Comparator comp) { mergeSort(a, from, to, comp, a.clone()); } /** * Sorts an array according to the order induced by the specified comparator * using mergesort. * *

* This sort is guaranteed to be stable: equal elements will not be * reordered as a result of the sort. An array as large as a * will be allocated by this method. * * @param a * the array to be sorted. * @param comp * the comparator to determine the sorting order. */ public static void mergeSort(final K a[], Comparator comp) { mergeSort(a, 0, a.length, comp); } /** * Searches a range of the specified array for the specified value using the * binary search algorithm. The range must be sorted prior to making this * call. If it is not sorted, the results are undefined. If the range * contains multiple elements with the specified value, there is no * guarantee which one will be found. * * @param a * the array to be searched. * @param from * the index of the first element (inclusive) to be searched. * @param to * the index of the last element (exclusive) to be searched. * @param key * the value to be searched for. * @return index of the search key, if it is contained in the array; * otherwise, (-(insertion point) - 1). The * insertion point is defined as the the point at which the * value would be inserted into the array: the index of the first * element greater than the key, or the length of the array, if all * elements in the array are less than the specified key. Note that * this guarantees that the return value will be ≥ 0 if and only * if the key is found. * @see java.util.Arrays */ @SuppressWarnings("unchecked") public static int binarySearch(final K[] a, int from, int to, final K key) { K midVal; to--; while (from <= to) { final int mid = (from + to) >>> 1; midVal = a[mid]; final int cmp = ((Comparable) midVal).compareTo(key); if (cmp < 0) from = mid + 1; else if (cmp > 0) to = mid - 1; else return mid; } return -(from + 1); } /** * Searches an array for the specified value using the binary search * algorithm. The range must be sorted prior to making this call. If it is * not sorted, the results are undefined. If the range contains multiple * elements with the specified value, there is no guarantee which one will * be found. * * @param a * the array to be searched. * @param key * the value to be searched for. * @return index of the search key, if it is contained in the array; * otherwise, (-(insertion point) - 1). The * insertion point is defined as the the point at which the * value would be inserted into the array: the index of the first * element greater than the key, or the length of the array, if all * elements in the array are less than the specified key. Note that * this guarantees that the return value will be ≥ 0 if and only * if the key is found. * @see java.util.Arrays */ public static int binarySearch(final K[] a, final K key) { return binarySearch(a, 0, a.length, key); } /** * Searches a range of the specified array for the specified value using the * binary search algorithm and a specified comparator. The range must be * sorted following the comparator prior to making this call. If it is not * sorted, the results are undefined. If the range contains multiple * elements with the specified value, there is no guarantee which one will * be found. * * @param a * the array to be searched. * @param from * the index of the first element (inclusive) to be searched. * @param to * the index of the last element (exclusive) to be searched. * @param key * the value to be searched for. * @param c * a comparator. * @return index of the search key, if it is contained in the array; * otherwise, (-(insertion point) - 1). The * insertion point is defined as the the point at which the * value would be inserted into the array: the index of the first * element greater than the key, or the length of the array, if all * elements in the array are less than the specified key. Note that * this guarantees that the return value will be ≥ 0 if and only * if the key is found. * @see java.util.Arrays */ public static int binarySearch(final K[] a, int from, int to, final K key, final Comparator c) { K midVal; to--; while (from <= to) { final int mid = (from + to) >>> 1; midVal = a[mid]; final int cmp = c.compare(midVal, key); if (cmp < 0) from = mid + 1; else if (cmp > 0) to = mid - 1; else return mid; // key found } return -(from + 1); } /** * Searches an array for the specified value using the binary search * algorithm and a specified comparator. The range must be sorted following * the comparator prior to making this call. If it is not sorted, the * results are undefined. If the range contains multiple elements with the * specified value, there is no guarantee which one will be found. * * @param a * the array to be searched. * @param key * the value to be searched for. * @param c * a comparator. * @return index of the search key, if it is contained in the array; * otherwise, (-(insertion point) - 1). The * insertion point is defined as the the point at which the * value would be inserted into the array: the index of the first * element greater than the key, or the length of the array, if all * elements in the array are less than the specified key. Note that * this guarantees that the return value will be ≥ 0 if and only * if the key is found. * @see java.util.Arrays */ public static int binarySearch(final K[] a, final K key, final Comparator c) { return binarySearch(a, 0, a.length, key, c); } /** * Shuffles the specified array fragment using the specified pseudorandom * number generator. * * @param a * the array to be shuffled. * @param from * the index of the first element (inclusive) to be shuffled. * @param to * the index of the last element (exclusive) to be shuffled. * @param random * a pseudorandom number generator (please use a XorShift* generator). * @return a. */ public static K[] shuffle(final K[] a, final int from, final int to, final Random random) { for (int i = to - from; i-- != 0;) { final int p = random.nextInt(i + 1); final K t = a[from + i]; a[from + i] = a[from + p]; a[from + p] = t; } return a; } /** * Shuffles the specified array using the specified pseudorandom number * generator. * * @param a * the array to be shuffled. * @param random * a pseudorandom number generator (please use a XorShift* generator). * @return a. */ public static K[] shuffle(final K[] a, final Random random) { for (int i = a.length; i-- != 0;) { final int p = random.nextInt(i + 1); final K t = a[i]; a[i] = a[p]; a[p] = t; } return a; } /** * Reverses the order of the elements in the specified array. * * @param a * the array to be reversed. * @return a. */ public static K[] reverse(final K[] a) { final int length = a.length; for (int i = length / 2; i-- != 0;) { final K t = a[length - i - 1]; a[length - i - 1] = a[i]; a[i] = t; } return a; } /** * Reverses the order of the elements in the specified array fragment. * * @param a * the array to be reversed. * @param from * the index of the first element (inclusive) to be reversed. * @param to * the index of the last element (exclusive) to be reversed. * @return a. */ public static K[] reverse(final K[] a, final int from, final int to) { final int length = to - from; for (int i = length / 2; i-- != 0;) { final K t = a[from + length - i - 1]; a[from + length - i - 1] = a[from + i]; a[from + i] = t; } return a; } /** A type-specific content-based hash strategy for arrays. */ private static final class ArrayHashStrategy implements Hash.Strategy, java.io.Serializable { private static final long serialVersionUID = -7046029254386353129L; public int hashCode(final K[] o) { return java.util.Arrays.hashCode(o); } public boolean equals(final K[] a, final K[] b) { return java.util.Arrays.equals(a, b); } } /** * A type-specific content-based hash strategy for arrays. * *

* This hash strategy may be used in custom hash collections whenever keys * are arrays, and they must be considered equal by content. This strategy * will handle null correctly, and it is serializable. */ @SuppressWarnings({"rawtypes"}) public final static Hash.Strategy HASH_STRATEGY = new ArrayHashStrategy(); }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy