All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jbpm.sim.report.AcklamStatUtil Maven / Gradle / Ivy

There is a newer version: 3.2.19.ayg
Show newest version
package org.jbpm.sim.report;

/**
 * Inverse Normal Cumulative Distribution Function Algorithm implementation.
 * 

* Adapted from Sherali Karimov's implementation of Peter J. Acklam's original algorithm. *

* * @author Sherali Karimov */ public class AcklamStatUtil { private static final double P_LOW = 0.02425D; private static final double P_HIGH = 1.0D - P_LOW; // Coefficients in rational approximations. private static final double ICDF_A[] = { -3.969683028665376e+01, 2.209460984245205e+02, -2.759285104469687e+02, 1.383577518672690e+02, -3.066479806614716e+01, 2.506628277459239e+00 }; private static final double ICDF_B[] = { -5.447609879822406e+01, 1.615858368580409e+02, -1.556989798598866e+02, 6.680131188771972e+01, -1.328068155288572e+01 }; private static final double ICDF_C[] = { -7.784894002430293e-03, -3.223964580411365e-01, -2.400758277161838e+00, -2.549732539343734e+00, 4.374664141464968e+00, 2.938163982698783e+00 }; private static final double ICDF_D[] = { 7.784695709041462e-03, 3.224671290700398e-01, 2.445134137142996e+00, 3.754408661907416e+00 }; public static double getInvCDF(double d, boolean highPrecision) { // Define break-points. // variable for result double z = 0; if (d == 0) z = Double.NEGATIVE_INFINITY; else if (d == 1) z = Double.POSITIVE_INFINITY; else if (Double.isNaN(d) || d < 0 || d > 1) z = Double.NaN; // Rational approximation for lower region: else if (d < P_LOW) { double q = Math.sqrt(-2 * Math.log(d)); z = (((((ICDF_C[0] * q + ICDF_C[1]) * q + ICDF_C[2]) * q + ICDF_C[3]) * q + ICDF_C[4]) * q + ICDF_C[5]) / ((((ICDF_D[0] * q + ICDF_D[1]) * q + ICDF_D[2]) * q + ICDF_D[3]) * q + 1); } // Rational approximation for upper region: else if (P_HIGH < d) { double q = Math.sqrt(-2 * Math.log(1 - d)); z = -(((((ICDF_C[0] * q + ICDF_C[1]) * q + ICDF_C[2]) * q + ICDF_C[3]) * q + ICDF_C[4]) * q + ICDF_C[5]) / ((((ICDF_D[0] * q + ICDF_D[1]) * q + ICDF_D[2]) * q + ICDF_D[3]) * q + 1); } // Rational approximation for central region: else { double q = d - 0.5D; double r = q * q; z = (((((ICDF_A[0] * r + ICDF_A[1]) * r + ICDF_A[2]) * r + ICDF_A[3]) * r + ICDF_A[4]) * r + ICDF_A[5]) * q / (((((ICDF_B[0] * r + ICDF_B[1]) * r + ICDF_B[2]) * r + ICDF_B[3]) * r + ICDF_B[4]) * r + 1); } if (highPrecision) z = refine(z, d); return z; } // ------------------------------------------------------------------ // Coefficients for approximation to erf in first interval // ------------------------------------------------------------------ private static final double ERF_A[] = { 3.16112374387056560E00, 1.13864154151050156E02, 3.77485237685302021E02, 3.20937758913846947E03, 1.85777706184603153E-1 }; private static final double ERF_B[] = { 2.36012909523441209E01, 2.44024637934444173E02, 1.28261652607737228E03, 2.84423683343917062E03 }; // ------------------------------------------------------------------ // Coefficients for approximation to erfc in second interval // ------------------------------------------------------------------ private static final double ERF_C[] = { 5.64188496988670089E-1, 8.88314979438837594E0, 6.61191906371416295E01, 2.98635138197400131E02, 8.81952221241769090E02, 1.71204761263407058E03, 2.05107837782607147E03, 1.23033935479799725E03, 2.15311535474403846E-8 }; private static final double ERF_D[] = { 1.57449261107098347E01, 1.17693950891312499E02, 5.37181101862009858E02, 1.62138957456669019E03, 3.29079923573345963E03, 4.36261909014324716E03, 3.43936767414372164E03, 1.23033935480374942E03 }; // ------------------------------------------------------------------ // Coefficients for approximation to erfc in third interval // ------------------------------------------------------------------ private static final double ERF_P[] = { 3.05326634961232344E-1, 3.60344899949804439E-1, 1.25781726111229246E-1, 1.60837851487422766E-2, 6.58749161529837803E-4, 1.63153871373020978E-2 }; private static final double ERF_Q[] = { 2.56852019228982242E00, 1.87295284992346047E00, 5.27905102951428412E-1, 6.05183413124413191E-2, 2.33520497626869185E-3 }; private static final double PI_SQRT = Math.sqrt(Math.PI); private static final double THRESHOLD = 0.46875D; /* ************************************** * Hardware dependant constants were calculated * on Dell "Dimension 4100": * - Pentium III 800 MHz * running Microsoft Windows 2000 * ************************************* */ private static final double X_MIN = Double.MIN_VALUE; private static final double X_INF = Double.MAX_VALUE; private static final double X_NEG = -9.38241396824444; private static final double X_SMALL = 1.110223024625156663E-16; private static final double X_BIG = 9.194E0; private static final double X_HUGE = 1.0D / (2.0D * Math.sqrt(X_SMALL)); private static final double X_MAX = Math.min(X_INF, (1 / (Math.sqrt(Math.PI) * X_MIN))); /** * This packet computes the error and complementary error funtions * for a real argument X. It contains two FUNCTION type * subprograms, ERF and ERFC (or DERF and DERFC), and one * SUBROUTINE type subprogram, CALERF. The calling statements * for the primary entities are *
Y=ERF(X) (or Y=DERF(X) )
* and *
Y=ERFC(X) (or Y=DERFC(X) )
* The routine CALERF is intended for internal packet use only, * all computations within the packet being concentrated in this * routine. The FUNCTION subprograms invoke CALERF with the * statement *
CALL CALERF(ARG,RESULT,JINT)
* where the parameter usage is as follows * * * * * * * * * * * * * * * * * * * * * * *
Function callParameters for CALERF
ARGRESULTJINT
ERF(ARG)Any REAL argumentERF(ARG)0
ERFC(ARG)ABS(ARG) < XMAXERFC(ARG)1
*

* The main computation evaluates near-minimax approximations * from "Rational Chebyshev approximations for the error function" * by W. J. Cody, Math. Comp., 1969, PP. 631-638. This * transportable program uses rational functions that theoretically * approximate erf(x) and erfc(x) to at least 18 significant * decimal digits. The accuracy achieved depends on the arithmetic * system, the compiler, the intrinsic functions, and proper * selection of the machine-dependent constants. *

* * @author W. J. Cody * Mathematics and Computer Science Division * Argonne National Laboratory * Argonne, IL 60439 * @since January 8, 1985 * @see Original FORTRAN version */ private static double calerf(double X, int jint) { double result = 0; double Y = Math.abs(X); double Y_SQ, X_NUM, X_DEN; if (Y <= THRESHOLD) { Y_SQ = 0.0D; if (Y > X_SMALL) Y_SQ = Y * Y; X_NUM = ERF_A[4] * Y_SQ; X_DEN = Y_SQ; for (int i = 0; i < 3; i++) { X_NUM = (X_NUM + ERF_A[i]) * Y_SQ; X_DEN = (X_DEN + ERF_B[i]) * Y_SQ; } result = X * (X_NUM + ERF_A[3]) / (X_DEN + ERF_B[3]); if (jint != 0) result = 1 - result; if (jint == 2) result = Math.exp(Y_SQ) * result; return result; } else if (Y <= 4.0D) { X_NUM = ERF_C[8] * Y; X_DEN = Y; for (int i = 0; i < 7; i++) { X_NUM = (X_NUM + ERF_C[i]) * Y; X_DEN = (X_DEN + ERF_D[i]) * Y; } result = (X_NUM + ERF_C[7]) / (X_DEN + ERF_D[7]); if (jint != 2) { Y_SQ = Math.round(Y * 16.0D) / 16.0D; double del = (Y - Y_SQ) * (Y + Y_SQ); result = Math.exp(-Y_SQ * Y_SQ) * Math.exp(-del) * result; } } else { result = 0.0D; if (Y >= X_BIG && (jint != 2 || Y >= X_MAX)) ; else if (Y >= X_BIG && Y >= X_HUGE) result = PI_SQRT / Y; else { Y_SQ = 1.0D / (Y * Y); X_NUM = ERF_P[5] * Y_SQ; X_DEN = Y_SQ; for (int i = 0; i < 4; i++) { X_NUM = (X_NUM + ERF_P[i]) * Y_SQ; X_DEN = (X_DEN + ERF_Q[i]) * Y_SQ; } result = Y_SQ * (X_NUM + ERF_P[4]) / (X_DEN + ERF_Q[4]); result = (PI_SQRT - result) / Y; if (jint != 2) { Y_SQ = Math.round(Y * 16.0D) / 16.0D; double del = (Y - Y_SQ) * (Y + Y_SQ); result = Math.exp(-Y_SQ * Y_SQ) * Math.exp(-del) * result; } } } if (jint == 0) { result = (0.5D - result) + 0.5D; if (X < 0) result = -result; } else if (jint == 1) { if (X < 0) result = 2.0D - result; } else { if (X < 0) { if (X < X_NEG) result = X_INF; else { Y_SQ = Math.round(X * 16.0D) / 16.0D; double del = (X - Y_SQ) * (X + Y_SQ); Y = Math.exp(Y_SQ * Y_SQ) * Math.exp(del); result = (Y + Y) - result; } } } return result; } /** * Refining algorytm is based on Halley rational method for finding roots of equations as * described at: http://www.math.uio.no/~jacklam/notes/invnorm/index.html by: Peter J. Acklam * [email protected] */ public static double refine(double x, double d) { if (d > 0 && d < 1) { double e = 0.5D * erfc(-x / Math.sqrt(2.0D)) - d; double u = e * Math.sqrt(2.0D * Math.PI) * Math.exp((x * x) / 2.0D); x = x - u / (1.0D + x * u / 2.0D); } return x; } public static double erf(double d) { return calerf(d, 0); } public static double erfc(double d) { return calerf(d, 1); } public static double erfcx(double d) { return calerf(d, 2); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy