angry1980.audio.utils.FFT Maven / Gradle / Ivy
package angry1980.audio.utils;
import java.util.List;
/*************************************************************************
* Compilation: javac FFT.java Execution: java FFT N Dependencies: Complex.java
*
* Compute the FFT and inverse FFT of a length N complex sequence. Bare bones
* implementation that runs in O(N log N) time. Our goal is to optimize the
* clarity of the code, rather than performance.
*
* Limitations ----------- - assumes N is a power of 2
*
* - not the most memory efficient algorithm (because it uses an object type for
* representing complex numbers and because it re-allocates memory for the
* subarray, instead of doing in-place or reusing a single temporary array)
*
*************************************************************************/
public class FFT {
public static Complex[] fft(List x) {
return fft(x.toArray(new Complex[x.size()]));
}
// compute the FFT of x[], assuming its length is a power of 2
public static Complex[] fft(Complex[] x) {
int N = x.length;
// base case
if (N == 1)
return new Complex[] { x[0] };
// radix 2 Cooley-Tukey FFT
if (N % 2 != 0) {
throw new RuntimeException("N is not a power of 2");
}
// fft of even terms
Complex[] even = new Complex[N / 2];
for (int k = 0; k < N / 2; k++) {
even[k] = x[2 * k];
}
Complex[] q = fft(even);
// fft of odd terms
Complex[] odd = even; // reuse the array
for (int k = 0; k < N / 2; k++) {
odd[k] = x[2 * k + 1];
}
Complex[] r = fft(odd);
// combine
Complex[] y = new Complex[N];
for (int k = 0; k < N / 2; k++) {
double kth = -2 * k * Math.PI / N;
Complex wk = new Complex(Math.cos(kth), Math.sin(kth));
y[k] = q[k].plus(wk.times(r[k]));
y[k + N / 2] = q[k].minus(wk.times(r[k]));
}
return y;
}
// compute the inverse FFT of x[], assuming its length is a power of 2
public static Complex[] ifft(Complex[] x) {
int N = x.length;
Complex[] y = new Complex[N];
// take conjugate
for (int i = 0; i < N; i++) {
y[i] = x[i].conjugate();
}
// compute forward FFT
y = fft(y);
// take conjugate again
for (int i = 0; i < N; i++) {
y[i] = y[i].conjugate();
}
// divide by N
for (int i = 0; i < N; i++) {
y[i] = y[i].times(1.0 / N);
}
return y;
}
// compute the circular convolution of x and y
public static Complex[] cconvolve(Complex[] x, Complex[] y) {
// should probably pad x and y with 0s so that they have same length
// and are powers of 2
if (x.length != y.length) {
throw new RuntimeException("Dimensions don't agree");
}
int N = x.length;
// compute FFT of each sequence
Complex[] a = fft(x);
Complex[] b = fft(y);
// point-wise multiply
Complex[] c = new Complex[N];
for (int i = 0; i < N; i++) {
c[i] = a[i].times(b[i]);
}
// compute inverse FFT
return ifft(c);
}
// compute the linear convolution of x and y
public static Complex[] convolve(Complex[] x, Complex[] y) {
Complex ZERO = new Complex(0, 0);
Complex[] a = new Complex[2 * x.length];
for (int i = 0; i < x.length; i++)
a[i] = x[i];
for (int i = x.length; i < 2 * x.length; i++)
a[i] = ZERO;
Complex[] b = new Complex[2 * y.length];
for (int i = 0; i < y.length; i++)
b[i] = y[i];
for (int i = y.length; i < 2 * y.length; i++)
b[i] = ZERO;
return cconvolve(a, b);
}
// display an array of Complex numbers to standard output
public static void show(Complex[] x, String title) {
System.out.println(title);
System.out.println("-------------------");
for (int i = 0; i < x.length; i++) {
System.out.println(x[i]);
}
System.out.println();
}
/*********************************************************************
* Test client and sample execution
*
* % java FFT 4 x ------------------- -0.03480425839330703
* 0.07910192950176387 0.7233322451735928 0.1659819820667019
*
* y = fft(x) ------------------- 0.9336118983487516 -0.7581365035668999 +
* 0.08688005256493803i 0.44344407521182005 -0.7581365035668999 -
* 0.08688005256493803i
*
* z = ifft(y) ------------------- -0.03480425839330703 0.07910192950176387
* + 2.6599344570851287E-18i 0.7233322451735928 0.1659819820667019 -
* 2.6599344570851287E-18i
*
* c = cconvolve(x, x) ------------------- 0.5506798633981853
* 0.23461407150576394 - 4.033186818023279E-18i -0.016542951108772352
* 0.10288019294318276 + 4.033186818023279E-18i
*
* d = convolve(x, x) ------------------- 0.001211336402308083 -
* 3.122502256758253E-17i -0.005506167987577068 - 5.058885073636224E-17i
* -0.044092969479563274 + 2.1934338938072244E-18i 0.10288019294318276 -
* 3.6147323062478115E-17i 0.5494685269958772 + 3.122502256758253E-17i
* 0.240120239493341 + 4.655566391833896E-17i 0.02755001837079092 -
* 2.1934338938072244E-18i 4.01805098805014E-17i
*
*********************************************************************/
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy