![JAR search and dependency download from the Maven repository](/logo.png)
com.asher_stern.crf.smalltests.DemoOptimizer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of CRF Show documentation
Show all versions of CRF Show documentation
Implementation of linear-chain Conditional Random Fields (CRF) in pure Java
The newest version!
package com.asher_stern.crf.smalltests;
//import org.apache.log4j.Level;
//
//import com.asher_stern.crf.function.DerivableFunction;
//import com.asher_stern.crf.function.optimization.LbfgsMinimizer;
//import com.asher_stern.crf.function.optimization.Minimizer;
//import com.asher_stern.crf.utilities.StringUtilities;
//import com.asher_stern.crf.utilities.log4j.Log4jInit;
/**
*
* @author Asher Stern
* Date: Nov 6, 2014
*
*/
public class DemoOptimizer
{
//
// public static void main(String[] args)
// {
// try
// {
// Log4jInit.init(Level.DEBUG);
// new DemoOptimizer().go();
// }
// catch(Throwable t)
// {
// t.printStackTrace(System.out);
// }
//
// }
//
//
// public void go()
// {
// DerivableFunction function = createFunction();
// //Optimizer> optimizer = new GradientDescentOptimizer(function);
// Minimizer> optimizer = new LbfgsMinimizer(function);
// optimizer.find();
//
// System.out.println("point = "+StringUtilities.arrayOfDoubleToString(optimizer.getPoint()));
// System.out.println("value = "+String.format("%-3.3f",optimizer.getValue()));
// }
//
//// private DerivableFunction createFunction()
//// {
//// // (x+2)^2
//// DerivableFunction function = new DerivableFunction()
//// {
//// @Override
//// public double value(double[] point)
//// {
//// return (point[0]+2.0)*(point[0]+2.0);
//// }
////
//// @Override
//// public int size()
//// {
//// return 1;
//// }
////
//// @Override
//// public double[] gradient(double[] point)
//// {
//// return new double[]{2.0*(point[0]+2.0)};
//// }
//// };
////
//// return function;
//// }
//
//
//
// private DerivableFunction createFunction()
// {
// // (x_1-2)^2 + (2-x_2)^2 + x_1*x_2
// DerivableFunction function = new DerivableFunction()
// {
// @Override
// public double value(double[] point)
// {
// return (point[0]-2.0)*(point[0]-2.0)+(2.0-point[1])*(2.0-point[1])+point[0]*point[1];
// }
//
// @Override
// public int size()
// {
// return 2;
// }
//
// @Override
// public double[] gradient(double[] point)
// {
// return new double[]{2.0*(point[0]-2.0)+point[1], -2.0*(2.0-point[1])+point[0]};
// }
// };
//
// return function;
// }
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy