All Downloads are FREE. Search and download functionalities are using the official Maven repository.

be.tarsos.dsp.util.Complex Maven / Gradle / Ivy

There is a newer version: 2.4-1
Show newest version
package be.tarsos.dsp.util;



/**
 * Complex implements a complex number and defines complex
arithmetic and mathematical functions
Last Updated February 27, 2001
Copyright 1997-2001
@version 1.0
@author Andrew G. Bennett
 * @author joren
 *
 */
public class Complex {

private double x,y;

/**
    Constructs the complex number z = u + i*v
    @param u Real part
    @param v Imaginary part
*/
public Complex(double u,double v) {
    x=u;
    y=v;
}

/**
    Real part of this Complex number 
    (the x-coordinate in rectangular coordinates).
    @return Re[z] where z is this Complex number.
*/
public double real() {
    return x;
}

/**
    Imaginary part of this Complex number 
    (the y-coordinate in rectangular coordinates).
    @return Im[z] where z is this Complex number.
*/
public double imag() {
    return y;
}

/**
    Modulus of this Complex number
    (the distance from the origin in polar coordinates).
    @return |z| where z is this Complex number.
*/
public double mod() {
    if (x!=0 || y!=0) {
        return Math.sqrt(x*x+y*y);
    } else {
        return 0d;
    }
}

/**
    Argument of this Complex number 
    (the angle in radians with the x-axis in polar coordinates).
    @return arg(z) where z is this Complex number.
*/
public double arg() {
    return Math.atan2(y,x);
}

/**
    Complex conjugate of this Complex number
    (the conjugate of x+i*y is x-i*y).
    @return z-bar where z is this Complex number.
*/
public Complex conj() {
    return new Complex(x,-y);
}

/**
    Addition of Complex numbers (doesn't change this Complex number).
    
(x+i*y) + (s+i*t) = (x+s)+i*(y+t). @param w is the number to add. @return z+w where z is this Complex number. */ public Complex plus(Complex w) { return new Complex(x+w.real(),y+w.imag()); } /** Subtraction of Complex numbers (doesn't change this Complex number).
(x+i*y) - (s+i*t) = (x-s)+i*(y-t). @param w is the number to subtract. @return z-w where z is this Complex number. */ public Complex minus(Complex w) { return new Complex(x-w.real(),y-w.imag()); } /** Complex multiplication (doesn't change this Complex number). @param w is the number to multiply by. @return z*w where z is this Complex number. */ public Complex times(Complex w) { return new Complex(x*w.real()-y*w.imag(),x*w.imag()+y*w.real()); } /** Division of Complex numbers (doesn't change this Complex number).
(x+i*y)/(s+i*t) = ((x*s+y*t) + i*(y*s-y*t)) / (s^2+t^2) @param w is the number to divide by @return new Complex number z/w where z is this Complex number */ public Complex div(Complex w) { double den=Math.pow(w.mod(),2); return new Complex((x*w.real()+y*w.imag())/den,(y*w.real()-x*w.imag())/den); } /** Complex exponential (doesn't change this Complex number). @return exp(z) where z is this Complex number. */ public Complex exp() { return new Complex(Math.exp(x)*Math.cos(y),Math.exp(x)*Math.sin(y)); } /** Principal branch of the Complex logarithm of this Complex number. (doesn't change this Complex number). The principal branch is the branch with -pi < arg <= pi. @return log(z) where z is this Complex number. */ public Complex log() { return new Complex(Math.log(this.mod()),this.arg()); } /** Complex square root (doesn't change this complex number). Computes the principal branch of the square root, which is the value with 0 <= arg < pi. @return sqrt(z) where z is this Complex number. */ public Complex sqrt() { double r=Math.sqrt(this.mod()); double theta=this.arg()/2; return new Complex(r*Math.cos(theta),r*Math.sin(theta)); } // Real cosh function (used to compute complex trig functions) private double cosh(double theta) { return (Math.exp(theta)+Math.exp(-theta))/2; } // Real sinh function (used to compute complex trig functions) private double sinh(double theta) { return (Math.exp(theta)-Math.exp(-theta))/2; } /** Sine of this Complex number (doesn't change this Complex number).
sin(z) = (exp(i*z)-exp(-i*z))/(2*i). @return sin(z) where z is this Complex number. */ public Complex sin() { return new Complex(cosh(y)*Math.sin(x),sinh(y)*Math.cos(x)); } /** Cosine of this Complex number (doesn't change this Complex number).
cos(z) = (exp(i*z)+exp(-i*z))/ 2. @return cos(z) where z is this Complex number. */ public Complex cos() { return new Complex(cosh(y)*Math.cos(x),-sinh(y)*Math.sin(x)); } /** Hyperbolic sine of this Complex number (doesn't change this Complex number).
sinh(z) = (exp(z)-exp(-z))/2. @return sinh(z) where z is this Complex number. */ public Complex sinh() { return new Complex(sinh(x)*Math.cos(y),cosh(x)*Math.sin(y)); } /** Hyperbolic cosine of this Complex number (doesn't change this Complex number).
cosh(z) = (exp(z) + exp(-z)) / 2. @return cosh(z) where z is this Complex number. */ public Complex cosh() { return new Complex(cosh(x)*Math.cos(y),sinh(x)*Math.sin(y)); } /** Tangent of this Complex number (doesn't change this Complex number).
tan(z) = sin(z)/cos(z). @return tan(z) where z is this Complex number. */ public Complex tan() { return (this.sin()).div(this.cos()); } /** Negative of this complex number (chs stands for change sign). This produces a new Complex number and doesn't change this Complex number.
-(x+i*y) = -x-i*y. @return -z where z is this Complex number. */ public Complex chs() { return new Complex(-x,-y); } /** String representation of this Complex number. @return x+i*y, x-i*y, x, or i*y as appropriate. */ public String toString() { if (x!=0 && y>0) { return x+" + "+y+"i"; } if (x!=0 && y<0) { return x+" - "+(-y)+"i"; } if (y==0) { return String.valueOf(x); } if (x==0) { return y+"i"; } // shouldn't get here (unless Inf or NaN) return x+" + i*"+y; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy