com.github.chen0040.gp.lgp.LGP Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of java-genetic-programming Show documentation
Show all versions of java-genetic-programming Show documentation
Genetic Programming in Java, including packages on Linear Genetic Programming
package com.github.chen0040.gp.lgp;
import com.github.chen0040.gp.lgp.enums.LGPCrossoverStrategy;
import com.github.chen0040.gp.lgp.enums.LGPInitializationStrategy;
import com.github.chen0040.gp.lgp.enums.LGPReplacementStrategy;
import com.github.chen0040.gp.commons.Observation;
import com.github.chen0040.gp.lgp.gp.Population;
import com.github.chen0040.gp.lgp.program.OperatorSet;
import com.github.chen0040.gp.lgp.program.Program;
import com.github.chen0040.gp.lgp.program.operators.*;
import com.github.chen0040.gp.services.RandEngine;
import com.github.chen0040.gp.services.SimpleRandEngine;
import lombok.AccessLevel;
import lombok.Getter;
import lombok.Setter;
import java.util.ArrayList;
import java.util.List;
import java.util.function.BiFunction;
/**
* Created by xschen on 29/4/2017.
*/
@Getter
@Setter
public class LGP {
public static final double DEFAULT_UNDEFINED_LOW = 1;
private boolean useUndefinedLow = true;
private double regPosInf = 10000000;
private double regNegInf = -10000000;
private double undefinedLow = DEFAULT_UNDEFINED_LOW;
private double undefinedHigh = 1000000;
private RandEngine randEngine = new SimpleRandEngine();
// number of registers of a linear program
private int registerCount;
@Setter(AccessLevel.NONE)
private List constants = new ArrayList<>();
@Setter(AccessLevel.NONE)
private List constantWeights = new ArrayList<>();
private OperatorSet operatorSet = new OperatorSet();
private int maxGeneration = 1000;
private int populationSize = 1000;
// SEC: parameters for population initialization
// BEGIN
private LGPInitializationStrategy programInitializationStrategy = LGPInitializationStrategy.VariableLength;
private int popInitConstantProgramLength = 10;
private int popInitMaxProgramLength = 15;
private int popInitMinProgramLength = 5;
// END
// SEC: parameters for crossover
// BEGIN
private double crossoverRate = 0.1;
private LGPCrossoverStrategy crossoverStrategy = LGPCrossoverStrategy.Linear;
private int maxProgramLength = 100;
private int minProgramLength = 20;
private int maxSegmentLength = 10;
private int maxDistanceOfCrossoverPoints = 10;
private int maxDifferenceOfSegmentLength = 5;
private double insertionProbability = 0.5;
// END
// SEC: parameters for micro-mutation
// BEGIN
private double macroMutationRate = 0.75;
private double microMutateConstantStandardDeviation = 1;
private double microMutateOperatorRate = 0.5;
private double microMutateRegisterRate = 0.5;
private double microMutateConstantRate = 0.5;
// END
// SEC: parameters for macro-mutation
// BEGIN
private double microMutationRate = 0.25;
private boolean effectiveMutation = false;
private double macroMutateInsertionRate = 0.5;
private double macroMutateDeletionRate = 0.5;
private int macroMutateMaxProgramLength = 100;
private int macroMutateMinProgramLength = 20;
// END
// SEC: parameters for cost evaluation
// BEGIN
private List observations = new ArrayList<>();
private BiFunction, Double> costEvaluator;
// END
// SEC: parameters for replacement
// BEGIN
private LGPReplacementStrategy replacementStrategy = LGPReplacementStrategy.ProbabilisticReplacement;
private double replacementProbability = 1.0;
// END
private int displayEvery = -1;
public double undefined(){
if(useUndefinedLow){
return undefinedLow;
}
return undefinedHigh;
}
public double constantWeight(int index) {
if(index >= constantWeights.size()) {
return 1.0;
}
return constantWeights.get(index);
}
public double constant(int index) {
return constants.get(index);
}
public double evaluateCost(Program program) {
program.markStructuralIntrons(this);
if(costEvaluator != null){
return costEvaluator.apply(program.makeEffectiveCopy(), observations);
} else {
throw new RuntimeException("Cost evaluator for the linear program is not specified!");
}
}
public Population newPopulation(){
return new Population(this);
}
public void addConstant(double constant, double weight) {
constants.add(constant);
constantWeights.add(weight);
}
public Program fit(List observations) {
this.observations.clear();
this.observations.addAll(observations);
long startTime = System.currentTimeMillis();
Population pop = this.newPopulation();
pop.initialize();
while (!pop.isTerminated())
{
pop.evolve();
if(displayEvery > 0 && pop.getCurrentGeneration() % displayEvery == 0) {
long seconds = (System.currentTimeMillis() - startTime) / 1000;
System.out.println("Generation: " + pop.getCurrentGeneration() + " (Pop: " + pop.size() + "), elapsed: " + seconds + " seconds");
System.out.println("Global Cost: " + pop.getGlobalBestProgram().getCost() + "\tCurrent Cost: " + pop.getCostInCurrentGeneration());
}
}
return pop.getGlobalBestProgram();
}
public void addConstants(double... constants) {
for(int i=0; i < constants.length; ++i){
addConstant(constants[i], 1.0);
}
}
public static LGP defaultConfig() {
LGP lgp = new LGP();
lgp.getOperatorSet().addAll(new Plus(), new Minus(), new Divide(), new Multiply(), new Power());
lgp.getOperatorSet().addIfLessThanOperator();
lgp.addConstants(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0);
return lgp;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy