com.github.chen0040.gp.treegp.TreeGP Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of java-genetic-programming Show documentation
Show all versions of java-genetic-programming Show documentation
Genetic Programming in Java, including packages on Linear Genetic Programming
package com.github.chen0040.gp.treegp;
import com.github.chen0040.gp.commons.Observation;
import com.github.chen0040.gp.services.RandEngine;
import com.github.chen0040.gp.services.SimpleRandEngine;
import com.github.chen0040.gp.treegp.enums.TGPCrossoverStrategy;
import com.github.chen0040.gp.treegp.enums.TGPInitializationStrategy;
import com.github.chen0040.gp.treegp.enums.TGPMutationStrategy;
import com.github.chen0040.gp.treegp.enums.TGPPopulationReplacementStrategy;
import com.github.chen0040.gp.treegp.gp.Population;
import com.github.chen0040.gp.treegp.program.*;
import com.github.chen0040.gp.treegp.program.operators.*;
import lombok.AccessLevel;
import lombok.Getter;
import lombok.Setter;
import java.util.ArrayList;
import java.util.List;
import java.util.function.BiFunction;
/**
* Created by xschen on 14/5/2017.
*/
@Getter
@Setter
public class TreeGP {
private TGPInitializationStrategy populationInitializationStrategy = TGPInitializationStrategy.INITIALIZATION_METHOD_RAMPED_GROW;
private TGPCrossoverStrategy crossoverStrategy = TGPCrossoverStrategy.CROSSOVER_SUBTREE_BIAS;
private TGPMutationStrategy mutationStrategy = TGPMutationStrategy.MUTATION_SUBTREE;
private TGPPopulationReplacementStrategy replacementStrategy = TGPPopulationReplacementStrategy.MuPlusLambda;
private RandEngine randEngine = new SimpleRandEngine();
private int maxDepthForCrossover = 7;
private int maxProgramDepth = 7;
private int maxDepthForCreation =7;
private double macroMutationRate = 0.25;
private double microMutationRate = 0.25;
private double crossoverRate = 0.5;
private double reproductionRate = 0.0;
private double elitismRatio;
private double epsilon = 0.000000001;
private int populationSize = 1000;
private int maxGeneration = 1000;
private int displayEvery = -1;
private int variableCount;
private OperatorSet operatorSet = new OperatorSet();
@Setter(AccessLevel.NONE)
private List constants = new ArrayList<>();
@Setter(AccessLevel.NONE)
private List constantTexts = new ArrayList<>();
@Setter(AccessLevel.NONE)
private List constantWeights = new ArrayList<>();
// SEC: parameters for cost evaluation
// BEGIN
private List observations = new ArrayList<>();
private BiFunction, Double> costEvaluator;
// END
public int getTreeCountPerSolution(){
return observations.get(0).outputCount();
}
public double constantWeight(int index) {
if(index >= constantWeights.size()) {
return 1.0;
}
return constantWeights.get(index);
}
public double constant(int index) {
return constants.get(index);
}
public String constantText(int index) {
return constantTexts.get(index);
}
public double evaluateCost(Solution solution) {
if(costEvaluator != null){
return costEvaluator.apply(solution.makeCopy(), observations);
} else {
throw new RuntimeException("Cost evaluator for the linear program is not specified!");
}
}
public Population newPopulation(){
return new Population(this);
}
public void addConstant(double constant, double weight) {
constants.add(constant);
constantWeights.add(weight);
constantTexts.add("");
}
public void addConstant(String constant, double weight) {
constants.add(0.0);
constantWeights.add(weight);
constantTexts.add(constant);
}
public void addConstants(String... constants) {
for(int i=0; i < constants.length; ++i){
addConstant(constants[i], 1.0);
}
}
public void addConstants(double... constants) {
for(int i=0; i < constants.length; ++i){
addConstant(constants[i], 1.0);
}
}
public Solution fit(List observations) {
this.observations.clear();
this.observations.addAll(observations);
long startTime = System.currentTimeMillis();
Population pop = this.newPopulation();
pop.initialize();
while (!pop.isTerminated())
{
pop.evolve();
if(displayEvery > 0 && pop.getCurrentGeneration() % displayEvery == 0) {
long seconds = (System.currentTimeMillis() - startTime) / 1000;
System.out.println("Generation: " + pop.getCurrentGeneration() + " (Pop: " + pop.size() + "), elapsed: " + seconds + " seconds");
System.out.println("Global Cost: " + pop.getGlobalBestSolution().getCost() + "\tCurrent Cost: " + pop.getCostInCurrentGeneration());
}
}
return pop.getGlobalBestSolution();
}
public static TreeGP defaultConfig(){
TreeGP tgp = new TreeGP();
tgp.getOperatorSet().addAll(new Plus(), new Minus(), new Divide(), new Multiply(), new Power());
tgp.getOperatorSet().addIfLessThanOperator();
tgp.addConstants(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0);
return tgp;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy