com.github.chen0040.glm.solvers.GlmAlgorithmIrlsQrNewton Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of java-glm Show documentation
Show all versions of java-glm Show documentation
Generalized linear models implemented in Java
package com.github.chen0040.glm.solvers;
import Jama.CholeskyDecomposition;
import Jama.Matrix;
import Jama.QRDecomposition;
import com.github.chen0040.glm.enums.GlmDistributionFamily;
import com.github.chen0040.glm.links.LinkFunction;
import com.github.chen0040.glm.metrics.GlmStatistics;
import com.github.chen0040.glm.maths.Mean;
import com.github.chen0040.glm.maths.StdDev;
import com.github.chen0040.glm.maths.Variance;
import java.util.Random;
/**
* Created by xschen on 15/8/15.
*/
///
/// The implementation of Glm based on IRLS QR Newton variant
/// The idea is to compute the QR factorization of matrix matrix A once. The factorization is then used in the IRLS iteration
///
/// QR factorization results in potentially much better numerical stability since no matrix inversion is actually performed
/// The cholesky factorization used to compute s requires W be positive definite matrix (i.e., z * W * z be positive for any vector z),
/// The positive definite matrix requirement can be easily checked by examining the diagonal entries of the weight matrix W
///
public class GlmAlgorithmIrlsQrNewton extends GlmAlgorithm {
private final static double EPSILON = 1e-20;
private static Random rand = new Random();
private Matrix A;
private Matrix b;
private Matrix At;
@Override
public void copy(GlmAlgorithm rhs){
super.copy(rhs);
GlmAlgorithmIrlsQrNewton rhs2 = (GlmAlgorithmIrlsQrNewton)rhs;
A = rhs2.A == null ? null : (Matrix)rhs2.A.clone();
b = rhs2.b == null ? null : (Matrix)rhs2.b.clone();
At = rhs2.At == null ? null : (Matrix)rhs2.At.clone();
}
@Override
public GlmAlgorithm makeCopy(){
GlmAlgorithmIrlsQrNewton clone = new GlmAlgorithmIrlsQrNewton();
clone.copy(this);
return clone;
}
public GlmAlgorithmIrlsQrNewton(){
}
public GlmAlgorithmIrlsQrNewton(GlmDistributionFamily distribution, LinkFunction linkFunc, double[][] A, double[] b)
{
super(distribution, linkFunc, null, null, null);
this.A = toMatrix(A);
this.b = columnVector(b);
this.At = this.A.transpose();
this.mStats = new GlmStatistics(A[0].length, b.length);
}
public GlmAlgorithmIrlsQrNewton(GlmDistributionFamily distribution, double[][] A, double[] b) {
super(distribution);
this.A = toMatrix(A);
this.b = columnVector(b);
this.At = this.A.transpose();
this.mStats = new GlmStatistics(A[0].length, b.length);
}
private static Matrix toMatrix(double[][] A) {
int m = A.length;
int n = A[0].length;
Matrix Am = new Matrix(m, n);
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
Am.set(i, j, A[i][j]);
}
}
return Am;
}
private static Matrix columnVector(double[] b) {
int m = b.length;
Matrix B = new Matrix(m, 1);
for (int i = 0; i < m; ++i) {
B.set(i, 0, b[i]);
}
return B;
}
private static Matrix columnVector(int n) {
return new Matrix(n, 1);
}
private static Matrix identity(int m) {
Matrix A = new Matrix(m, m);
for (int i = 0; i < m; ++i) {
A.set(i, i, 1);
}
return A;
}
@Override
public double[] solve() {
int m = A.getRowDimension();
int n = A.getColumnDimension();
Matrix s = columnVector(n);
Matrix sy = columnVector(n);
for(int i=0; i < n; ++i){
s.set(i, 0, 0);
}
Matrix t = columnVector(m);
for(int i=0; i < m; ++i){
t.set(i, 0, 0);
}
double[] g = new double[m];
double[] gprime = new double[m];
QRDecomposition qr = A.qr();
Matrix Q = qr.getQ();
Matrix R = qr.getR(); // A is m x n, Q is m x n orthogonal matrix, R is n x n (R will be upper triangular matrix if m == n)
Matrix Qt = Q.transpose();
double[] W = null;
for (int j = 0; j < maxIters; ++j) {
Matrix z = columnVector(m);
for (int k = 0; k < m; ++k) {
g[k] = linkFunc.GetInvLink(t.get(k, 0));
gprime[k] = linkFunc.GetInvLinkDerivative(t.get(k, 0));
z.set(k, 0, t.get(k, 0) + (b.get(k, 0) - g[k]) / gprime[k]);
}
W = new double[m];
double w_kk_min = Double.MAX_VALUE;
for (int k = 0; k < m; ++k) {
double g_variance = getVariance(g[k]);
double w_kk = gprime[k] * gprime[k] / (g_variance);
W[k] = w_kk;
w_kk_min = Math.min(w_kk, w_kk_min);
}
if (w_kk_min < Math.sqrt(EPSILON)) {
System.out.println("Warning: Tiny weights encountered, min(diag(W)) is too small");
}
Matrix s_old = s;
Matrix WQ = new Matrix(m, n); // W * Q
Matrix Wz = columnVector(m); // W * z
for (int k = 0; k < m; k++) {
Wz.set(k, 0, z.get(k, 0) * W[k]);
for (int k2 = 0; k2 < n; ++k2) {
WQ.set(k, k2, Q.get(k, k2) * W[k]);
}
}
Matrix QtWQ = Qt.times(WQ); // a n x n positive definite matrix, therefore can apply Cholesky
Matrix QtWz = Qt.times(Wz);
CholeskyDecomposition cholesky = QtWQ.chol();
Matrix L = cholesky.getL();
Matrix Lt = L.transpose();
// (Qt * W * Q) * s = Qt * W * z;
// L * Lt * s = Qt * W * z (Cholesky factorization on Qt * W * Q)
// L * sy = Qt * W * z, Lt * s = sy
// Now forward solve sy for L * sy = Qt * W * z
// Now backward solve s for Lt * s = sy
s = columnVector(n);
for (int i = 0; i < n; ++i) {
s.set(i, 0, 0);
sy.set(i, 0, 0);
}
//forward solve sy for L * sy = Qt * W * z
//Console.WriteLine(L);
for (int i = 0; i < n; ++i) {
double cross_prod = 0;
for (int k = 0; k < i; ++k) {
cross_prod += L.get(i, k) * sy.get(k, 0);
}
sy.set(i, 0, (QtWz.get(i, 0) - cross_prod) / L.get(i, i));
}
//backward solve s for U * s = sy
for (int i = n - 1; i >= 0; --i) {
double cross_prod = 0;
for (int k = i + 1; k < n; ++k) {
cross_prod += Lt.get(i, k) * s.get(k, 0);
}
s.set(i, 0, (sy.get(i, 0) - cross_prod) / Lt.get(i, i));
}
t = Q.times(s);
if ((s_old.minus(s)).norm2() < mTol) {
break;
}
}
glmCoefficients = new double[n];
//backsolve x for R * x = Qt * t
Matrix c = Qt.times(t);
for (int i = n - 1; i >= 0; --i) // since m >= n
{
double cross_prod = 0;
for (int j = i + 1; j < n; ++j) {
cross_prod += R.get(i, j) * glmCoefficients[j];
}
glmCoefficients[i] = (c.get(i, 0) - cross_prod) / R.get(i, i);
}
updateStatistics(W);
return getCoefficients();
}
private Matrix scalarMultiply(Matrix A, double[] v){
int m = v.length;
int m2 = A.getRowDimension();
int n2 = A.getColumnDimension();
Matrix C = new Matrix(m2, n2);
if(m == m2){
for(int i=0; i < m2; ++i){
for(int j=0; j < n2; ++j){
C.set(i, j, A.get(i, j) * v[i]);
}
}
}else if(m == n2){
for(int i=0; i < n2; ++i){
for(int j=0; j < m2; ++j){
C.set(j, i, A.get(j, i) * v[i]);
}
}
}
return C;
}
protected void updateStatistics(double[] W) {
Matrix AtWA = scalarMultiply(At, W).times(A);
Matrix AtWAInv = AtWA.inverse();
int n = AtWAInv.getRowDimension();
int m = b.getRowDimension();
double[] stdErrors = mStats.getStandardErrors();
double[][] VCovMatrix = mStats.getVCovMatrix();
double[] residuals = mStats.getResiduals();
for (int i = 0; i < n; ++i) {
stdErrors[i] = Math.sqrt(AtWAInv.get(i, i));
for (int j = 0; j < n; ++j) {
VCovMatrix[i][j] = AtWAInv.get(i, j);
}
}
double[] outcomes = new double[m];
for (int i = 0; i < m; i++) {
double cross_prod = 0;
for (int j = 0; j < n; ++j) {
cross_prod += A.get(i, j) * glmCoefficients[j];
}
residuals[i] = b.get(i, 0) - linkFunc.GetInvLink(cross_prod);
outcomes[i] = b.get(i, 0);
}
mStats.setResidualStdDev(StdDev.apply(residuals, 0));
mStats.setResponseMean(Mean.apply(outcomes));
mStats.setResponseVariance(Variance.apply(outcomes, mStats.getResponseMean()));
mStats.setR2(1 - mStats.getResidualStdDev() * mStats.getResidualStdDev() / mStats.getResponseVariance());
mStats.setAdjustedR2(1 - mStats.getResidualStdDev() * mStats.getResidualStdDev() / mStats.getResponseVariance() * (n - 1) / (n - glmCoefficients.length - 1));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy