com.github.chen0040.glm.solvers.OneVsOneGlmClassifier Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of java-glm Show documentation
Show all versions of java-glm Show documentation
Generalized linear models implemented in Java
package com.github.chen0040.glm.solvers;
import com.github.chen0040.data.frame.BasicDataFrame;
import com.github.chen0040.data.frame.DataFrame;
import com.github.chen0040.data.frame.DataRow;
import com.github.chen0040.data.utils.TupleTwo;
import java.util.*;
import java.util.function.Supplier;
import java.util.stream.Collectors;
/**
* Created by xschen on 8/20/2015 0020.
*/
public class OneVsOneGlmClassifier {
protected List> classifiers;
private double alpha = 0.1;
private boolean shuffleData = false;
private List classLabels = new ArrayList<>();
private Supplier generator = () -> Glm.linear();
private static String BINARY_LABEL = "success";
public OneVsOneGlmClassifier(List classLabels){
this.classLabels.addAll(classLabels);
classifiers = new ArrayList<>();
}
public OneVsOneGlmClassifier(){
super();
classifiers = new ArrayList<>();
}
public OneVsOneGlmClassifier(Supplier binaryClassifierGenerator) {
super();
classifiers = new ArrayList<>();
this.generator = binaryClassifierGenerator;
}
public boolean isShuffleData() {
return shuffleData;
}
public void setShuffleData(boolean shuffleData) {
this.shuffleData = shuffleData;
}
public double getAlpha() {
return alpha;
}
public void setAlpha(double alpha) {
this.alpha = alpha;
}
protected void createClassifiers(DataFrame dataFrame){
classifiers = new ArrayList<>();
if(classLabels.size()==0){
classLabels.addAll(dataFrame.stream().map(DataRow::categoricalTarget).distinct().collect(Collectors.toList()));
}
for(int i=0; i < classLabels.size()-1; ++i){
for(int j=i+1; j < classLabels.size(); ++j) {
Glm svr1 = createClassifier(classLabels.get(i));
Glm svr2 = createClassifier(classLabels.get(j));
classifiers.add(new TupleTwo<>(svr1, svr2));
}
}
}
protected Glm createClassifier(String classLabel) {
Glm svr = generator.get();
svr.setName(classLabel);
return svr;
}
protected double getClassifierScore(DataRow tuple, Glm classifier) {
return classifier.transform(tuple);
}
protected List split(DataFrame dataFrame, int n){
List miniFrames = new ArrayList<>();
for(int i=0; i < n; ++i){
miniFrames.add(new BasicDataFrame());
}
int index = 0;
for(DataRow tuple : dataFrame) {
int batchIndex = index % n;
miniFrames.get(batchIndex).addRow(tuple);
index++;
}
return miniFrames;
}
protected List remerge(List batches, int k){
List newBatches = new ArrayList<>();
for(int i=0; i < batches.size(); ++i){
DataFrame newBatch = new BasicDataFrame();
for(int j=0; j < k; ++j){
int d = (i + j) % batches.size();
DataFrame batch = batches.get(d);
for(DataRow tuple : batch){
newBatch.addRow(tuple.makeCopy());
}
}
newBatches.add(newBatch);
}
return newBatches;
}
public double transform(DataRow row) {
String label = classify(row);
return classLabels.indexOf(label);
}
public void fit(DataFrame dataFrame) {
createClassifiers(dataFrame);
if(shuffleData) {
dataFrame.shuffle();
}
List batches = split(dataFrame, classifiers.size());
int k= Math.max(1, (int)alpha * batches.size());
batches = remerge(batches, k);
for(int i=0; i < classifiers.size(); ++i){
TupleTwo pair = classifiers.get(i);
Glm classifier1 = pair._1();
Glm classifier2 = pair._2();
classifier1.fit(createBinaryBatch(batches.get(i), classifier1.getName()));
classifier2.fit(createBinaryBatch(batches.get(i), classifier2.getName()));
}
}
private DataFrame createBinaryBatch(DataFrame dataFrame, String classLabel){
DataFrame binaryBatch = new BasicDataFrame();
for(DataRow row : dataFrame){
String label = row.categoricalTarget();
DataRow rowWithBinaryTargetOutput = row.makeCopy();
rowWithBinaryTargetOutput.setTargetCell(BINARY_LABEL, label.equals(classLabel) ? 1.0 : 0.0);
binaryBatch.addRow(rowWithBinaryTargetOutput);
}
return binaryBatch;
}
public String classify(DataRow row) {
row = row.makeCopy();
if(row.getTargetColumnNames().isEmpty()) {
row.setTargetColumnNames(Collections.singletonList(BINARY_LABEL));
}
Map scores = score(row);
String predicatedClassLabel = null;
int maxScore = 0;
for(Map.Entry entry : scores.entrySet()){
String label = entry.getKey();
int score = entry.getValue();
if(score > maxScore){
maxScore= score;
predicatedClassLabel = label;
}
}
if(predicatedClassLabel == null) {
predicatedClassLabel = "NA";
}
return predicatedClassLabel;
}
public void reset() {
classifiers.clear();
classLabels.clear();
}
public List getClassLabels() {
return classLabels;
}
public Map score(DataRow row) {
Map scores = new HashMap<>();
for(int i=0; i < classifiers.size(); ++i){
TupleTwo pair = classifiers.get(i);
Glm classifier1 = pair._1();
Glm classifier2 = pair._2();
double score1 = getClassifierScore(row, classifier1);
double score2 = getClassifierScore(row, classifier2);
if(score1 == score2) continue;
String winningLabel;
if(score1 > score2) {
winningLabel = classifier1.getName();
}
else {
winningLabel = classifier2.getName();
}
if(scores.containsKey(winningLabel)){
scores.put(winningLabel, scores.get(winningLabel) + 1);
}else {
scores.put(winningLabel, 1);
}
}
return scores;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy