All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.github.chen0040.libsvm.svm_predict Maven / Gradle / Ivy

There is a newer version: 1.0.4
Show newest version
package com.github.chen0040.libsvm;

import java.io.*;
import java.util.StringTokenizer;


class svm_predict {
	private static svm_print_interface svm_print_null = new svm_print_interface()
	{
		public void print(String s) {}
	};

	private static svm_print_interface svm_print_stdout = new svm_print_interface()
	{
		public void print(String s)
		{
			System.out.print(s);
		}
	};

	private static svm_print_interface svm_print_string = svm_print_stdout;

	static void info(String s) 
	{
		svm_print_string.print(s);
	}

	private static double atof(String s)
	{
		return Double.valueOf(s).doubleValue();
	}

	private static int atoi(String s)
	{
		return Integer.parseInt(s);
	}

	private static void predict(BufferedReader input, DataOutputStream output, svm_model model, int predict_probability) throws IOException
	{
		int correct = 0;
		int total = 0;
		double error = 0;
		double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;

		int svm_type= SupportVectorMachine.svm_get_svm_type(model);
		int nr_class= SupportVectorMachine.svm_get_nr_class(model);
		double[] prob_estimates=null;

		if(predict_probability == 1)
		{
			if(svm_type == svm_parameter.EPSILON_SVR ||
			   svm_type == svm_parameter.NU_SVR)
			{
				svm_predict.info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma="+ SupportVectorMachine
						.svm_get_svr_probability(model)+"\n");
			}
			else
			{
				int[] labels=new int[nr_class];
				SupportVectorMachine.svm_get_labels(model,labels);
				prob_estimates = new double[nr_class];
				output.writeBytes("labels");
				for(int j=0;j=argv.length-2)
			exit_with_help();
		try 
		{
			BufferedReader input = new BufferedReader(new InputStreamReader(new FileInputStream(argv[i]), "UTF-8"));
			DataOutputStream output = new DataOutputStream(new BufferedOutputStream(new FileOutputStream(argv[i+2])));
			svm_model model = SupportVectorMachine.svm_load_model(argv[i+1]);
			if (model == null)
			{
				System.err.print("can't open model file "+argv[i+1]+"\n");
				System.exit(1);
			}
			if(predict_probability == 1)
			{
				if(SupportVectorMachine.svm_check_probability_model(model)==0)
				{
					System.err.print("Model does not support probabiliy estimates\n");
					System.exit(1);
				}
			}
			else
			{
				if(SupportVectorMachine.svm_check_probability_model(model)!=0)
				{
					svm_predict.info("Model supports probability estimates, but disabled in prediction.\n");
				}
			}
			predict(input,output,model,predict_probability);
			input.close();
			output.close();
		} 
		catch(FileNotFoundException e) 
		{
			exit_with_help();
		}
		catch(ArrayIndexOutOfBoundsException e) 
		{
			exit_with_help();
		}
	}
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy