
org.jpedal.images.ImageOps Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jpedal Show documentation
Show all versions of jpedal Show documentation
Patched jPedal based on the last official jpedal version 4.92
The newest version!
/*
* ===========================================
* Java Pdf Extraction Decoding Access Library
* ===========================================
*
* Project Info: http://www.idrsolutions.com
* Help section for developers at http://www.idrsolutions.com/java-pdf-library-support/
*
* (C) Copyright 1997-2013, IDRsolutions and Contributors.
*
* This file is part of JPedal
*
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* ---------------
* ImageOps.java
* ---------------
*/
package org.jpedal.images;
public class ImageOps {
private static int[] bitCheck = { 128, 64, 32, 16, 8, 4, 2, 1 };
private static byte[] invertByteImage(int w, int h, int componentCount, byte[] data) {
// System.out.println("w="+w);
// System.out.println("h="+h);
// System.out.println("components="+componentCount);
// System.out.println("data="+data.length);
// Double check the componentCount
int temp = (data.length / (w * h));
if (temp != componentCount) {
componentCount = temp;
}
int bytesInRow = w * componentCount;
int topByte = 0, bottomByte = ((h - 1) * bytesInRow);
byte tempByte;
while (topByte < bottomByte) {
for (int row = 0; row < (bytesInRow); row += componentCount) {
for (int c = 0; c < componentCount; c++) {
tempByte = data[topByte + row + c];
data[topByte + row + c] = data[bottomByte + row + c];
data[bottomByte + row + c] = tempByte;
}
}
topByte = topByte + bytesInRow;
bottomByte = bottomByte - bytesInRow;
}
return data;
}
private static byte[] invertOneBitImage(int w, int h, byte[] data) {
int bytesInRow = (w + 7) / 8;
int topByte = 0, bottomByte = (h - 1) * bytesInRow;
byte tempByte;
while (topByte < bottomByte) {
for (int row = 0; row < bytesInRow; row++) {
tempByte = data[topByte + row];
data[topByte + row] = data[bottomByte + row];
data[bottomByte + row] = tempByte;
}
topByte = topByte + bytesInRow;
bottomByte = bottomByte - bytesInRow;
}
return data;
}
private static byte[] rotateOneBitImage(int w, int h, byte[] data, int newH, int newW) {
int bytesInRow = (w + 7) / 8;
int newBytesInRow = (newW + 7) / 8;
byte[] newData = new byte[newBytesInRow * newH];
// read x,y and set as y,x
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
// read pixel in existing array as x,y
int byteUsed = (((h - 1) - y) * bytesInRow) + (x >> 3);
byte pixelByte = data[byteUsed];
// clever optimisation here when ready
// 8 empty bits means ignore next 8 bits
if (pixelByte == 0) {
x = x + 7;
}
else {
int bitUsed = x & 7;
// if set we need to set in second array, set pixel in new array as y,x
if ((pixelByte & bitCheck[bitUsed]) == bitCheck[bitUsed]) {
// read pixel in existing array as x,y
int newByteUsed = (x * newBytesInRow) + (y >> 3);
byte newPixelByte = newData[newByteUsed];
int newBitUsed = y & 7;
// switch on
newPixelByte = (byte) (newPixelByte | bitCheck[newBitUsed]);
// write back
newData[newByteUsed] = newPixelByte;
}
}
}
}
return newData;
}
private static byte[] rotateByteImage(int w, int h, int componentCount, byte[] data) {
int temp = (data.length / (w * h));
if (temp != componentCount) {
componentCount = temp;
}
int bytesInRow = w * componentCount;
int newBytesInRow = h * componentCount;
byte[] rotatedData = new byte[data.length];
for (int y = 0; y < h; y++) {
for (int x = 0; x < bytesInRow; x += componentCount) {
int c = 0;
// ClockWise
int convertPoint = ((x / componentCount) * (newBytesInRow)) + (newBytesInRow - (y * componentCount) - componentCount);
// Anti-ClockWise
// int convertPoint = (((w-1)-(x/componentCount))*newBytesInRow)+(y*componentCount);
while (c < componentCount) {
// x=(x+c)
// y=(y*bytesInRow)
rotatedData[convertPoint + c] = data[(y * bytesInRow) + (x + c)];
c++;
}
}
}
return rotatedData;
}
public static byte[] invertImage(byte[] data, int w, int h, int d, int comp, byte[] index) {
// either process or just return
if (d == 8) { // add in next
if (index != null) comp = 1;
else // will fail if wrong size
data = checkSize(data, w, h, comp);
return ImageOps.invertByteImage(w, h, comp, data);
// }else if(d==4){
}
else
if (d == 1) {
return ImageOps.invertOneBitImage(w, h, data);
}
return null;
}
public static byte[] rotateImage(byte[] data, int w, int h, int d, int comp, byte[] index) {
// either process or just return
if (d == 8) { // add in next
if (index != null) comp = 1;
/** Rotated H and W are calcualted within method */
return ImageOps.rotateByteImage(w, h, comp, data);
}
else
if (d == 4) {
}
else
if (d == 1) {
/** The W and H are swapped for the new values, this gives rotated coords */
return ImageOps.rotateOneBitImage(w, h, data, w, h);
}
return null;
}
public static byte[] checkSize(byte[] data, int w, int h, int comp) {
int correctSize = w * h * comp;
if (data.length < correctSize) {
byte[] newData = new byte[correctSize];
System.arraycopy(data, 0, newData, 0, data.length);
data = newData;
}
return data;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy