
com.github.dadiyang.autologging.aop.util.SnowFlakeIdUtils Maven / Gradle / Ivy
package com.github.dadiyang.autologging.aop.util;
import java.net.InetAddress;
import java.util.concurrent.ThreadLocalRandom;
/**
* 雪花算法工具类
*
* @author Twitter_Snowflake
*/
public class SnowFlakeIdUtils {
private static final SnowFlakeIdUtils INSTANCE;
static {
// 生成默认随机的 workerId 和 数据中心id
int dataCenterId;
try {
// 数据中心使用机器 hostName 的哈希
dataCenterId = Math.abs(InetAddress.getLocalHost().getHostName().hashCode()) & 31;
} catch (Exception e) {
// 获取不到则使用随机数
dataCenterId = ThreadLocalRandom.current().nextInt(32);
}
// workerId 使用随机数
int workerId = ThreadLocalRandom.current().nextInt(32);
INSTANCE = new SnowFlakeIdUtils(workerId, dataCenterId);
}
/**
* 开始时间截 (2019-04-01)
*/
private static final long TWEPOCH = 1554106304301L;
/**
* 机器id所占的位数
*/
private static final long WORKER_ID_BITS = 5L;
/**
* 数据标识id所占的位数
*/
private static final long DATACENTER_ID_BITS = 5L;
/**
* 序列在id中占的位数
*/
private static final long SEQUENCE_BITS = 12L;
/**
* 机器ID向左移12位
*/
private static final long WORKER_ID_SHIFT = SEQUENCE_BITS;
/**
* 数据标识id向左移17位(12+5)
*/
private static final long DATACENTER_ID_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS;
/**
* 时间截向左移22位(5+5+12)
*/
private static final long TIMESTAMP_LEFT_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS + DATACENTER_ID_BITS;
/**
* 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095)
*/
private static final long SEQUENCE_MASK = -1L ^ (-1L << SEQUENCE_BITS);
/**
* 工作机器ID(0~31)
*/
private long workerId = 0;
/**
* 数据中心ID(0~31)
*/
private long datacenterId = 0;
/**
* 毫秒内序列(0~4095)
*/
private long sequence = 0L;
/**
* 上次生成ID的时间截
*/
private long lastTimestamp = -1L;
/**
* 通过单例的静态方法获取下一个id
*
* @return 生成的id
*/
public static long next() {
return INSTANCE.nextId();
}
public SnowFlakeIdUtils(long workerId, long datacenterId) {
this.workerId = workerId;
this.datacenterId = datacenterId;
}
/**
* 获得下一个ID (该方法是线程安全的)
*
* @return 生成的id
*/
public synchronized long nextId() {
long timestamp = timeGen();
//如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
if (timestamp < lastTimestamp) {
throw new RuntimeException(
String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}
//如果是同一时间生成的,则进行毫秒内序列
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & SEQUENCE_MASK;
//毫秒内序列溢出
if (sequence == 0) {
//阻塞到下一个毫秒,获得新的时间戳
timestamp = tilNextMillis(lastTimestamp);
}
}
//时间戳改变,毫秒内序列重置
else {
sequence = 0L;
}
//上次生成ID的时间截
lastTimestamp = timestamp;
//移位并通过或运算拼到一起组成64位的ID
return ((timestamp - TWEPOCH) << TIMESTAMP_LEFT_SHIFT)
| (datacenterId << DATACENTER_ID_SHIFT)
| (workerId << WORKER_ID_SHIFT)
| sequence;
}
/**
* 阻塞到下一个毫秒,直到获得新的时间戳
*
* @param lastTimestamp 上次生成ID的时间截
* @return 当前时间戳
*/
private long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}
/**
* 返回以毫秒为单位的当前时间
*
* @return 当前时间(毫秒)
*/
private long timeGen() {
return System.currentTimeMillis();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy