com.github.ojil.algorithm.Gray8AffineWarp Maven / Gradle / Ivy
Show all versions of ojil-core Show documentation
/*
* Gray8AffineWarp.java
*
* Created on September 9, 2006, 3:17 PM
*
* Copyright 2007 by Jon A. Webb
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the Lesser GNU General Public License
* along with this program. If not, see .
*
*/
package com.github.ojil.algorithm;
import com.github.ojil.core.Error;
import com.github.ojil.core.Gray8Image;
import com.github.ojil.core.Gray8OffsetImage;
import com.github.ojil.core.Image;
import com.github.ojil.core.PipelineStage;
import com.github.ojil.core.Vec2;
/**
* This PipelineStage performs an affine transformation on an input
* @author webb
*/
public class Gray8AffineWarp extends PipelineStage {
static final int WARP_X_FIRST = 1;
static final int WARP_Y_FIRST = 2;
int nMaxX, nMaxY, nMinX, nMinY;
private int nWarpOrder; // either WARP_X_FIRST or WARP_Y_FIRST
int nXOffset, nYOffset;
Integer rnWarp[][];
Integer[] rnWarpX;
Integer[] rnWarpY;
/** Creates a new instance of Gray8AffineWarp. Gray8AffineWarp performs
* an affine warp on an input Gray8Image. The affine transformation is
* decomposed into two stages, following the work of George Wolberg.
* See http://www-cs.ccny.cuny.edu/~wolberg/diw.html for the definitive
* work on image warping.
*
* @param warp the 2x3 affine warp to be performed. The elements of this
* matrix are assumed to be scaled by 2**16 for accuracy.
* @throws com.github.ojil.core.Error if the warp is null or not a 2x3 matrix.
*/
public Gray8AffineWarp(Integer[][] warp) throws com.github.ojil.core.Error {
this.setWarp(warp);
}
/**
* Calculate the affine transformation applied to p, keeping in mind
* that the warp is scaled by 2**16, so we must shift to get the
* correct result
* @param a 2x3 affine transformation, scaled by 2**16
* @param p input vector
* @return transformed vector
*/
private Vec2 affineTrans(Integer a[][], Vec2 p) {
return new Vec2(
(a[0][0] * p.getX() + a[0][1] * p.getY() + a[0][2])>>16,
(a[1][0] * p.getX() + a[1][1] * p.getY() + a[1][2])>>16);
}
/**
* Affine warp of an image.
*
* @param image the input gray image.
* @throws com.github.ojil.core.Error if the input image is not gray,
* or the trapezoid already specified extends outside its bounds.
*/
public void push(Image image) throws com.github.ojil.core.Error {
if (!(image instanceof Gray8Image)) {
throw new Error(
Error.PACKAGE.ALGORITHM,
ErrorCodes.IMAGE_NOT_GRAY8IMAGE,
image.toString(),
null,
null);
}
// first calculate bounds of output image
Vec2 p00 = affineTrans(this.rnWarp, new Vec2(0, 0));
Vec2 p01 = affineTrans(this.rnWarp, new Vec2(0, image.getHeight()));
Vec2 p10 = affineTrans(this.rnWarp, new Vec2(image.getWidth(), 0));
Vec2 p11 = affineTrans(this.rnWarp, new Vec2(image.getWidth(),
image.getHeight()));
this.nMinX = (int) Math.min(p00.getX(),
Math.min(p01.getX(), Math.min(p10.getX(), p11.getX())));
this.nMaxX = (int) Math.max(p00.getX(),
Math.max(p01.getX(), Math.max(p10.getX(), p11.getX())));
this.nMinY = (int) Math.min(p00.getY(),
Math.min(p01.getY(), Math.min(p10.getY(), p11.getY())));
this.nMaxY = (int) Math.max(p00.getY(),
Math.max(p01.getY(), Math.max(p10.getY(), p11.getY())));
this.nXOffset = -this.nMinX;
this.nYOffset = -this.nMinY;
if (this.nWarpOrder == Gray8AffineWarp.WARP_X_FIRST) {
Gray8Image grayX = warpX((Gray8Image) image);
//super.setOutput(new Gray8OffsetImage(grayX, this.nXOffset, this.nYOffset));
Gray8Image grayY = warpY(grayX);
super.setOutput(new Gray8OffsetImage(grayY, this.nXOffset, this.nYOffset));
} else {
Gray8Image grayY = warpY((Gray8Image) image);
//super.setOutput(new Gray8OffsetImage(grayY, this.nXOffset, this.nYOffset));
Gray8Image grayX = warpX(grayY);
super.setOutput(new Gray8OffsetImage(grayX, this.nXOffset, this.nYOffset));
}
}
/** Sets the warp in use and decomposes it into two stages, determining
* the order of the warp (x first or y first).
* @param warp the 2 x 3 affine warp transformation. The matrix is
* assumed to have been scaled by 2**16 for accuracy.
* @throws com.github.ojil.core.Error if the warp is not 2x3 or the warp is not
* decomposable (warp[0][0] or warp[1][1] is 0).
*/
public void setWarp(Integer[][] warp) throws com.github.ojil.core.Error {
if (warp.length != 2 || warp[0].length != 3 || warp[1].length != 3) {
throw new Error(
Error.PACKAGE.ALGORITHM,
com.github.ojil.algorithm.ErrorCodes.PARAMETER_WRONG_SIZE,
warp.toString(),
null,
null);
}
// nDivisor is scaled by 2**16. Since warp is scaled by 2**16 multiplying
// its elements would scale by 2**32, resulting in overflow. So we
// rescale before multiplying
int nDivisorY = ((warp[0][0]>>8) * (warp[1][1]>>8)) -
((warp[0][1]>>8) * (warp[1][0]>>8));
if (warp[0][0] == 0 || warp[1][1] == 0 || nDivisorY == 0) {
throw new Error(
Error.PACKAGE.ALGORITHM,
com.github.ojil.algorithm.ErrorCodes.PARAMETER_OUT_OF_RANGE,
warp.toString(),
null,
null);
}
this.rnWarp = warp;
if (Math.abs(warp[0][0]) > Math.abs(warp[1][1])) {
// warp in x direction first
this.nWarpOrder = Gray8AffineWarp.WARP_X_FIRST;
// copy x warp
// rnWarp is scaled by 2**16, as is warp. If we divided warp
// by nDivisor, scaled by 2**16 we'd scale by 2**8 so we must rescale
// carefully to get the output scaled properly while not overflowing
// the warp values (except column 2)
// are all < 1 so scaling by 2**16 gives a number
// less than 2**16 which means it can be safely scaled up 8 bits
this.rnWarpX = new Integer[3];
this.rnWarpX[0] = (warp[1][1]<<8) / (nDivisorY>>8);
this.rnWarpX[1] = -(warp[0][1]<<8) / (nDivisorY>>8);
this.rnWarpX[2] = ((warp[0][1]>>4)*(warp[1][2]>>4) -
(warp[0][2]>>4)*(warp[1][1]>>4))/(nDivisorY>>8);
// calculate y warp
this.rnWarpY = new Integer[3];
this.rnWarpY[0] = -(warp[1][0]<<8)/(warp[1][1]>>8);
this.rnWarpY[1] = (1<<24) / (warp[1][1]>>8);
this.rnWarpY[2] = -(warp[1][2]<<8) / (warp[1][1]>>8);
} else {
// warp in y direction first
this.nWarpOrder = Gray8AffineWarp.WARP_Y_FIRST;
// copy y warp
this.rnWarpY = new Integer[3];
this.rnWarpY[0] = -(warp[1][0]<<8) / (nDivisorY>>8);
this.rnWarpY[1] = (warp[0][0]<<8) / (nDivisorY>>8);
this.rnWarpY[2] = ((warp[0][2]>>4)*(warp[1][0]>>4) -
(warp[0][0]>>4)*(warp[1][2]>>4))/(nDivisorY>>8);
// calculate x warp
this.rnWarpX = new Integer[3];
this.rnWarpX[0] = (1<<24) / (warp[0][0]>>8);
this.rnWarpX[1] = -(warp[0][1]<<8) / (warp[0][0]>>8);
this.rnWarpX[2] = -(warp[0][2]<<8) / (warp[0][0]>>8);
}
}
public Vec2 warpVec(Vec2 p) {
int x = (p.getX() * this.rnWarp[0][0] + p.getY() * this.rnWarp[0][1] +
this.rnWarp[0][2])>>16;
int y = (p.getX() * this.rnWarp[1][0] + p.getY() * this.rnWarp[1][1] +
this.rnWarp[1][2])>>16;
return new Vec2(x,y);
}
private Gray8Image warpX(Gray8Image grayIn) {
// allocate image. it is implicitly offset by nMinX
Gray8Image grayOut = new Gray8Image(
nMaxX - nMinX,
grayIn.getHeight(),
Byte.MIN_VALUE);
// pointer to input
Byte[] bDataIn = grayIn.getData();
Byte[] bDataOut = grayOut.getData();
for (int x = nMinX; x> 16;
// nXfrace is the fractional component of nX, scaled by 2**16
int nXfrac = nX - (nXfloor<<16);
// interpolate to get point
if (nXfloor >= 0 && nXfloor < grayIn.getWidth()-1) {
int bIn = bDataIn[y*grayIn.getWidth() + nXfloor];
int bInP1 = bDataIn[y*grayIn.getWidth() + nXfloor + 1];
int bOut = (bIn * ((1<<16)- nXfrac) +
bInP1 * nXfrac)>>16;
bDataOut[grayOut.getWidth()*y + x-nMinX] = (byte) bOut;
}
}
}
this.nXOffset = nMinX;
return grayOut;
}
private Gray8Image warpY(Gray8Image grayIn) {
// allocate image. it is implicitly offset by nMinY
Gray8Image grayOut = new Gray8Image(
grayIn.getWidth(),
nMaxY - nMinY,
Byte.MIN_VALUE);
// pointer to input
Byte[] bDataIn = grayIn.getData();
Byte[] bDataOut = grayOut.getData();
for (int y = nMinY; y> 16;
// nYfrac is the fractional portion of nY, scaled by 2**16
int nYfrac = nY - (nYfloor<<16);
// interpolate to get point
if (nYfloor >= 0 && nYfloor < grayIn.getHeight()-1) {
int bIn = bDataIn[nYfloor*grayIn.getWidth() + x];
int bInP1 = bDataIn[(nYfloor+1)*grayIn.getWidth() + x];
int bOut = (bIn * ((1<<16) - nYfrac) +
bInP1 * nYfrac)>>16;
bDataOut[grayOut.getWidth()*(y-nMinY) + x] = (byte) bOut;
}
}
}
this.nYOffset = nMinY;
return grayOut;
}
/**
* Returns a string describing the current instance. All the constructor
* parameters are returned in the order specified in the constructor.
* @return The string describing the current instance. The string is of the form
* "jjil.algorithm.Gray8AffineWarpxxx (startRow,endRow,leftColStart,
* rightColStart,leftColEnd,rightColEnd)"
*/
public String toString() {
return super.toString() + " (" + this.rnWarp.toString() + ")"; //$NON-NLS-1$
}
}