com.github.ojil.algorithm.RgbKCluster Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ojil-core Show documentation
Show all versions of ojil-core Show documentation
Open Java Imaging Library.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the Lesser GNU General Public License
* along with this program. If not, see .
*/
package com.github.ojil.algorithm;
import java.util.Enumeration;
import java.util.Vector;
import com.github.ojil.core.RgbVal;
/**
* Cluster a vector of RGB values using a simple means-based algorithm.
* Copyright 2008 by Jon A. Webb
* @author webb
*/
public class RgbKCluster {
public static class RgbCluster {
int nRedMean, nGreenMean, nBlueMean;
int nPixels;
public RgbCluster(int nRed, int nGreen, int nBlue, int nPixels) {
this.nRedMean = nRed;
this.nGreenMean = nGreen;
this.nBlueMean = nBlue;
this.nPixels = nPixels;
}
public RgbCluster add(RgbCluster c) {
this.nRedMean = (this.nRedMean*this.nPixels + c.nRedMean*c.nPixels)
/ (this.nPixels + c.nPixels);
this.nGreenMean = (this.nGreenMean*this.nPixels + c.nGreenMean*c.nPixels)
/ (this.nPixels + c.nPixels);
this.nBlueMean = (this.nBlueMean*this.nPixels + c.nBlueMean*c.nPixels)
/ (this.nPixels + c.nPixels);
return this;
}
public int getPixels() {
return this.nPixels;
}
public int getDiff(RgbCluster c) {
return Math.abs(this.nRedMean - c.nRedMean) +
Math.abs(this.nGreenMean - c.nGreenMean) +
Math.abs(this.nBlueMean - c.nBlueMean);
}
public int getRgb() {
return RgbVal.toRgb(
(byte)Math.max(Byte.MIN_VALUE, Math.min(Byte.MAX_VALUE, this.nRedMean)),
(byte)Math.max(Byte.MIN_VALUE, Math.min(Byte.MAX_VALUE, this.nGreenMean)),
(byte)Math.max(Byte.MIN_VALUE, Math.min(Byte.MAX_VALUE, this.nBlueMean)));
}
}
private int nClusters;
private int nTolerance;
public RgbKCluster(int nClusters, int nTolerance) {
this.nClusters = nClusters;
this.nTolerance = nTolerance;
}
public Vector> cluster(Vector> vRgbClusters) {
Vector vResult = new Vector<>();
do {
// find the largest cluster
RgbCluster cLarge = null;
for (Enumeration> e = vRgbClusters.elements(); e.hasMoreElements();) {
RgbCluster c = (RgbCluster) e.nextElement();
if (cLarge == null || cLarge.getPixels() < c.getPixels()) {
cLarge = c;
}
}
vRgbClusters.removeElement(cLarge);
// group all the remaining clusters together with the largest cluster
// if they fall within a tolerance
Vector vRemaining = new Vector<>();
for (Enumeration> e = vRgbClusters.elements(); e.hasMoreElements();) {
RgbCluster c = (RgbCluster) e.nextElement();
if (cLarge.getDiff(c) < this.nTolerance) {
cLarge.add(c);
} else {
vRemaining.addElement(c);
}
}
vResult.addElement(cLarge);
vRgbClusters = vRemaining;
} while (vResult.size() < this.nClusters && vRgbClusters.size() > 0);
return vResult;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy