com.github.ojil.core.Complex Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ojil-core Show documentation
Show all versions of ojil-core Show documentation
Open Java Imaging Library.
/*
* Complex.java
* Implementation of complex numbers, for use in FFT etc.
* This uses integers to store the real and imaginary components.
* Scale arguments to the constructor appropriately.
* All operations are done in-place so, e.g., x.div(y) modifies x.
*
* Created on October 29, 2007, 12:53 PM
*
* To change this template, choose Tools | Template Manager
* and open the template in the editor.
*
* Copyright 2007 by Jon A. Webb
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the Lesser GNU General Public License
* along with this program. If not, see .
*
*/
package com.github.ojil.core;
/**
* A simple implementation of complex numbers for use in FFT, etc.
* @author webb
*/
public class Complex extends Number{
private static final long serialVersionUID = 777755552694276640L;
private int nImag;
private int nReal;
/**
* Default constructor.
*/
public Complex() {
this.nReal = 0;
this.nImag = 0;
}
/**
* Copy constructor.
* @param cx the complex number to copy.
*/
public Complex(Complex cx) {
this.nReal = cx.nReal;
this.nImag = cx.nImag;
}
/**
* Creates a new instance of Complex from real and imaginary arguments.
* @param nReal Real component.
* @param nImag Imaginary component.
*/
public Complex(int nReal, int nImag) {
this.nReal = nReal;
this.nImag = nImag;
}
/**
* Create a new Complex number from a real number. The imaginary component will
* be 0.
* @param nReal The real component.
*/
public Complex(int nReal) {
this.nReal = nReal;
this.nImag = 0;
}
/**
* Complex conjugate
* @return the complex conjugate of this.
*/
public Complex conjugate() {
this.nImag = -this.nImag;
return this;
}
/**
* Divide the complex number by a real ineger.
* @param n the divisor.
* @return the Complex number resulting from the division (replaces this).
* @throws com.github.ojil.core.Error if n = 0
*/
public Complex div(int n) throws com.github.ojil.core.Error {
if (n==0) {
throw new Error(
Error.PACKAGE.CORE,
ErrorCodes.MATH_DIVISION_ZERO,
this.toString(),
new Integer(n).toString(),
null);
}
this.nReal /= n;
this.nImag /= n;
return this;
}
/**
* Divides one complex number by another
* @param cx The complex number to divide by.
* @return the result of dividing this number by cx.
* @throws com.github.ojil.core.Error If division by 0 is attempted, i.e., cx.square() is 0.
*/
public Complex div(Complex cx) throws com.github.ojil.core.Error {
int nShift = 0;
if (Math.abs(cx.real()) >= MathPlus.SCALE ||
Math.abs(cx.imag()) >= MathPlus.SCALE) {
cx = new Complex(cx).rsh(MathPlus.SHIFT);
nShift = MathPlus.SHIFT;
}
int nSq = cx.square();
if (nSq == 0) {
throw new Error(
Error.PACKAGE.CORE,
ErrorCodes.MATH_PRODUCT_TOO_LARGE,
this.toString(),
cx.toString(),
null);
}
// cx is right shifted by SHIFT bits. So multiplying by it and
// dividing by its square shifts left by SHIFT bits. We shift back to
// compensate
int nR = ((this.nReal * cx.nReal + this.nImag * cx.nImag) / nSq) >> nShift;
int nI = ((this.nImag * cx.nReal - this.nReal * cx.nImag) / nSq) >> nShift;
this.nReal = nR;
this.nImag = nI;
return this;
}
/**
* Equality test.
* @param cx the Complex number to compare with.
* @return true iff the two Complex numbers are equal.
*/
public boolean equals(Complex cx) {
return this.nReal == cx.nReal && this.nImag == cx.nImag;
}
/**
* The imaginary component of the complex number.
* @return the imaginary component.
*/
public int imag() {
return this.nImag;
}
/**
* Shifts a complex number left a certain number of bits.
* @param n The number of bits to shift by.
* @return the result of shifting the complex number left the number of bits.
*/
public Complex lsh(int n) {
this.nReal <<= n;
this.nImag <<= n;
return this;
}
/**
* Complex magnitude.
* @return the magnitude of this number, i.e., sqrt(real**2 + imag**2)
* @throws com.github.ojil.core.Error if the square value computed is too large.
*/
public int magnitude() throws com.github.ojil.core.Error {
// special case when one component is 0
if (this.nReal == 0 || this.nImag == 0) {
return Math.abs(this.nReal) + Math.abs(this.nImag);
}
// try to extend the range of numbers we can take the magnitude of beyond
// 2**16
if (Math.abs(this.nReal) > (MathPlus.SCALE >> 1) ||
Math.abs(this.nImag) > (MathPlus.SCALE >> 1)) {
// squaring the number will result in overflow
// so we shift right first instead
int nR = this.nReal >> MathPlus.SHIFT;
int nI = this.nImag >> MathPlus.SHIFT;
return MathPlus.sqrt(nR * nR + nI * nI) << MathPlus.SHIFT;
} else {
return MathPlus.sqrt(square());
}
}
/**
* Subtracts one complex number from another.
* @param cx the complex number to subtract.
* @return the difference of the two complex numbers.
*/
public Complex minus(Complex cx) {
this.nReal -= cx.nReal;
this.nImag -= cx.nImag;
return this;
}
/**
* Adds two complex numbers.
* @param cx the complex number to add.
* @return the sum of the two complex numbers.
*/
public Complex plus(Complex cx) {
this.nReal += cx.nReal;
this.nImag += cx.nImag;
return this;
}
/**
* The real component of the complex number.
* @return the real component of the complex number.
*/
public int real() {
return this.nReal;
}
/**
* Shifts a complex number right a certain number of bits.
* @param n The number of bits to shift by.
* @return the result of shifting the complex number the number of bits.
*/
public Complex rsh(int n) {
this.nReal >>= n;
this.nImag >>= n;
return this;
}
/**
* Computes the absolute square.
* @return The absolute square, i.e, real**2 + imag**2.
* @throws com.github.ojil.core.Error if Complex value is too large.
*/
public int square() throws com.github.ojil.core.Error {
if (Math.abs(this.nReal) > MathPlus.SCALE ||
Math.abs(this.nImag) > MathPlus.SCALE) {
throw new Error(
Error.PACKAGE.CORE,
ErrorCodes.MATH_SQUARE_TOO_LARGE,
this.toString(),
null,
null);
}
return this.nReal * this.nReal + this.nImag * this.nImag;
}
/**
* Multiplies two complex numbers.
* @param cx The complex number to multiply by.
* @return The product of the two numbers.
*/
public Complex times(Complex cx) {
int nR = this.nReal * cx.nReal - this.nImag * cx.nImag;
int nI = this.nReal * cx.nImag + this.nImag * cx.nReal;
this.nReal = nR;
this.nImag = nI;
return this;
}
/**
* Multiplies a complex number by a real number.
* @param nX The complex number to multiply by.
* @return The product of the two numbers.
*/
public Complex times(int nX) {
int nR = this.nReal * nX;
int nI = this.nReal * nX;
this.nReal = nR;
this.nImag = nI;
return this;
}
/**
* Returns a String representation of the complex number
* @return the string (real, imag)
*/
public String toString() {
return "(" + this.nReal + ", " + this.nImag + ")"; //$NON-NLS-1$ //$NON-NLS-2$ //$NON-NLS-3$
}
@Override
public double doubleValue() {
return nReal;
}
@Override
public float floatValue() {
return nReal;
}
@Override
public int intValue() {
return nReal;
}
@Override
public long longValue() {
return nReal;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy