com.github.ojil.algorithm.Gray8Statistics Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ojil-core Show documentation
Show all versions of ojil-core Show documentation
Open Java Imaging Library.
/*
* Gray8Statistics.java
*
* Created on November 11, 2006, 2:17 PM
*
* To change this template, choose Tools | Template Manager
* and open the template in the editor.
*
* Copyright 2007 by Jon A. Webb
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the Lesser GNU General Public License
* along with this program. If not, see .
*
*/
package com.github.ojil.algorithm;
import com.github.ojil.core.Gray8Image;
import com.github.ojil.core.Image;
import com.github.ojil.core.ImageError;
import com.github.ojil.core.MathPlus;
/**
* Gray8Statistics is used to measure the mean and variance of a gray image.
*
*
* @author webb
*/
public class Gray8Statistics {
private int nMean; // mean image value, times 256
private int nVariance; // image variance, times 256
/**
* Creates a new instance of Gray8Statistics
*/
public Gray8Statistics() {
}
/**
* Estimate the mean and variance of an input gray image.
*
* @param image
* the input image.
* @throws ImageError
* if the input image is not gray.
*/
public void push(final Image> image) throws ImageError {
if (!(image instanceof Gray8Image)) {
throw new ImageError(ImageError.PACKAGE.ALGORITHM, AlgorithmErrorCodes.IMAGE_NOT_GRAY8IMAGE, image.toString(), null, null);
}
final Gray8Image> gray = (Gray8Image>) image;
int nSum = 0, nSumSq = 0;
final Byte[] data = gray.getData();
for (int i = 0; i < gray.getHeight(); i++) {
for (int j = 0; j < gray.getWidth(); j++) {
final int pixel = (data[(i * image.getWidth()) + j]) - Byte.MIN_VALUE;
nSum += pixel;
nSumSq += pixel * pixel;
}
}
/**
* Compute mean and variance. Both are scaled by 256 for accuracy.
*/
final int nCount = image.getHeight() * image.getWidth();
nMean = (256 * nSum) / nCount;
// expanded form of variance computation
// note order of multiplications and divisions. we're trying to
// avoid overflow here.
nVariance = ((nSumSq / (nCount - 1)) - (((nSum / nCount) * nSum) / (nCount - 1))) << 8;
}
/**
* Return computed mean, times 256.
*
* @return the mean value, times 256.
*/
public int getMean() {
return nMean;
}
/**
* Return standard deviation, times 256 using Newton's iteration.
*
* @return the standard deviation, times 256.
* @throws ImageError
* if the variance computed in push() is less than zero.
*/
public int getStdDev() throws ImageError {
// n = variance * 256 * 256 (for accuracy)
final int n = getVariance() << 8; // getVariance() already is * 256
if (n < 0) {
throw new ImageError(ImageError.PACKAGE.ALGORITHM, AlgorithmErrorCodes.STATISTICS_VARIANCE_LESS_THAN_ZERO, new Integer(n).toString(), null, null);
}
// return standard deviation * 256 = sqrt(variance * 256 * 256)
return MathPlus.sqrt(n);
}
/**
* Return computed variance, times 256.
*
* @return the computed variance value.
*/
public int getVariance() {
return nVariance;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy