com.github.ojil.core.Complex Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ojil-core Show documentation
Show all versions of ojil-core Show documentation
Open Java Imaging Library.
/*
* Complex.java
* Implementation of complex numbers, for use in FFT etc.
* This uses integers to store the real and imaginary components.
* Scale arguments to the constructor appropriately.
* All operations are done in-place so, e.g., x.div(y) modifies x.
*
* Created on October 29, 2007, 12:53 PM
*
* To change this template, choose Tools | Template Manager
* and open the template in the editor.
*
* Copyright 2007 by Jon A. Webb
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the Lesser GNU General Public License
* along with this program. If not, see .
*
*/
package com.github.ojil.core;
/**
* A simple implementation of complex numbers for use in FFT, etc.
*
* @author webb
*/
public class Complex extends Number {
private static final long serialVersionUID = 777755552694276640L;
private int nImag;
private int nReal;
/**
* Default constructor.
*/
public Complex() {
nReal = 0;
nImag = 0;
}
/**
* Copy constructor.
*
* @param cx
* the complex number to copy.
*/
public Complex(final Complex cx) {
nReal = cx.nReal;
nImag = cx.nImag;
}
/**
* Creates a new instance of Complex from real and imaginary arguments.
*
* @param nReal
* Real component.
* @param nImag
* Imaginary component.
*/
public Complex(final int nReal, final int nImag) {
this.nReal = nReal;
this.nImag = nImag;
}
/**
* Create a new Complex number from a real number. The imaginary component
* will be 0.
*
* @param nReal
* The real component.
*/
public Complex(final int nReal) {
this.nReal = nReal;
nImag = 0;
}
/**
* Complex conjugate
*
* @return the complex conjugate of this.
*/
public Complex conjugate() {
nImag = -nImag;
return this;
}
/**
* Divide the complex number by a real ineger.
*
* @param n
* the divisor.
* @return the Complex number resulting from the division (replaces this).
* @throws ImageError
* if n = 0
*/
public Complex div(final int n) throws ImageError {
if (n == 0) {
throw new ImageError(ImageError.PACKAGE.CORE, ErrorCodes.MATH_DIVISION_ZERO, toString(), new Integer(n).toString(), null);
}
nReal /= n;
nImag /= n;
return this;
}
/**
* Divides one complex number by another
*
* @param cx
* The complex number to divide by.
* @return the result of dividing this number by cx.
* @throws ImageError
* If division by 0 is attempted, i.e., cx.square() is 0.
*/
public Complex div(Complex cx) throws ImageError {
int nShift = 0;
if ((Math.abs(cx.real()) >= MathPlus.SCALE) || (Math.abs(cx.imag()) >= MathPlus.SCALE)) {
cx = new Complex(cx).rsh(MathPlus.SHIFT);
nShift = MathPlus.SHIFT;
}
final int nSq = cx.square();
if (nSq == 0) {
throw new ImageError(ImageError.PACKAGE.CORE, ErrorCodes.MATH_PRODUCT_TOO_LARGE, toString(), cx.toString(), null);
}
// cx is right shifted by SHIFT bits. So multiplying by it and
// dividing by its square shifts left by SHIFT bits. We shift back to
// compensate
final int nR = (((nReal * cx.nReal) + (nImag * cx.nImag)) / nSq) >> nShift;
final int nI = (((nImag * cx.nReal) - (nReal * cx.nImag)) / nSq) >> nShift;
nReal = nR;
nImag = nI;
return this;
}
/**
* Equality test.
*
* @param cx
* the Complex number to compare with.
* @return true iff the two Complex numbers are equal.
*/
public boolean equals(final Complex cx) {
return (nReal == cx.nReal) && (nImag == cx.nImag);
}
/**
* The imaginary component of the complex number.
*
* @return the imaginary component.
*/
public int imag() {
return nImag;
}
/**
* Shifts a complex number left a certain number of bits.
*
* @param n
* The number of bits to shift by.
* @return the result of shifting the complex number left the number of
* bits.
*/
public Complex lsh(final int n) {
nReal <<= n;
nImag <<= n;
return this;
}
/**
* Complex magnitude.
*
* @return the magnitude of this number, i.e., sqrt(real**2 + imag**2)
* @throws ImageError
* if the square value computed is too large.
*/
public int magnitude() throws ImageError {
// special case when one component is 0
if ((nReal == 0) || (nImag == 0)) {
return Math.abs(nReal) + Math.abs(nImag);
}
// try to extend the range of numbers we can take the magnitude of
// beyond
// 2**16
if ((Math.abs(nReal) > (MathPlus.SCALE >> 1)) || (Math.abs(nImag) > (MathPlus.SCALE >> 1))) {
// squaring the number will result in overflow
// so we shift right first instead
final int nR = nReal >> MathPlus.SHIFT;
final int nI = nImag >> MathPlus.SHIFT;
return MathPlus.sqrt((nR * nR) + (nI * nI)) << MathPlus.SHIFT;
} else {
return MathPlus.sqrt(square());
}
}
/**
* Subtracts one complex number from another.
*
* @param cx
* the complex number to subtract.
* @return the difference of the two complex numbers.
*/
public Complex minus(final Complex cx) {
nReal -= cx.nReal;
nImag -= cx.nImag;
return this;
}
/**
* Adds two complex numbers.
*
* @param cx
* the complex number to add.
* @return the sum of the two complex numbers.
*/
public Complex plus(final Complex cx) {
nReal += cx.nReal;
nImag += cx.nImag;
return this;
}
/**
* The real component of the complex number.
*
* @return the real component of the complex number.
*/
public int real() {
return nReal;
}
/**
* Shifts a complex number right a certain number of bits.
*
* @param n
* The number of bits to shift by.
* @return the result of shifting the complex number the number of bits.
*/
public Complex rsh(final int n) {
nReal >>= n;
nImag >>= n;
return this;
}
/**
* Computes the absolute square.
*
* @return The absolute square, i.e, real**2 + imag**2.
* @throws ImageError
* if Complex value is too large.
*/
public int square() throws ImageError {
if ((Math.abs(nReal) > MathPlus.SCALE) || (Math.abs(nImag) > MathPlus.SCALE)) {
throw new ImageError(ImageError.PACKAGE.CORE, ErrorCodes.MATH_SQUARE_TOO_LARGE, toString(), null, null);
}
return (nReal * nReal) + (nImag * nImag);
}
/**
* Multiplies two complex numbers.
*
* @param cx
* The complex number to multiply by.
* @return The product of the two numbers.
*/
public Complex times(final Complex cx) {
final int nR = (nReal * cx.nReal) - (nImag * cx.nImag);
final int nI = (nReal * cx.nImag) + (nImag * cx.nReal);
nReal = nR;
nImag = nI;
return this;
}
/**
* Multiplies a complex number by a real number.
*
* @param nX
* The complex number to multiply by.
* @return The product of the two numbers.
*/
public Complex times(final int nX) {
final int nR = nReal * nX;
final int nI = nReal * nX;
nReal = nR;
nImag = nI;
return this;
}
/**
* Returns a String representation of the complex number
*
* @return the string (real, imag)
*/
@Override
public String toString() {
return "(" + nReal + ", " + nImag + ")"; //$NON-NLS-1$ //$NON-NLS-2$ //$NON-NLS-3$
}
@Override
public double doubleValue() {
return nReal;
}
@Override
public float floatValue() {
return nReal;
}
@Override
public int intValue() {
return nReal;
}
@Override
public long longValue() {
return nReal;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy