
darwin.jopenctm.compression.CommonAlgorithms Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of JOpenCTM Show documentation
Show all versions of JOpenCTM Show documentation
Java implementation of the openCTM Mesh compression file format
/*
* Copyright (C) 2012 Daniel Heinrich
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* (version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see
* or write to the Free Software Foundation, Inc., 51 Franklin Street,
* Fifth Floor, Boston, MA 02110-1301 USA.
*/
package darwin.jopenctm.compression;
import java.util.Arrays;
import darwin.jopenctm.data.Grid;
import static darwin.jopenctm.data.Mesh.CTM_NORMAL_ELEMENT_COUNT;
import static darwin.jopenctm.data.Mesh.CTM_POSITION_ELEMENT_COUNT;
import static java.lang.Math.sqrt;
/**
*
* @author daniel
*/
public class CommonAlgorithms
{
/**
* Calculate inverse derivatives of the vertices.
*/
public static float[] restoreVertices(int[] intVertices, int[] gridIndices, Grid grid, float vertexPrecision)
{
int ve = CTM_POSITION_ELEMENT_COUNT;
int vc = intVertices.length / ve;
int prevGridIndex = 0x7fffffff;
int prevDeltaX = 0;
float[] vertices = new float[vc * ve];
for (int i = 0; i < vc; ++i) {
// Get grid box origin
int gridIdx = gridIndices[i];
float[] gridOrigin = gridIdxToPoint(grid, gridIdx);
// Restore original point
int deltaX = intVertices[i * ve];
if (gridIdx == prevGridIndex) {
deltaX += prevDeltaX;
}
vertices[i * ve] = vertexPrecision * deltaX + gridOrigin[0];
vertices[i * ve + 1] = vertexPrecision * intVertices[i * ve + 1] + gridOrigin[1];
vertices[i * ve + 2] = vertexPrecision * intVertices[i * ve + 2] + gridOrigin[2];
prevGridIndex = gridIdx;
prevDeltaX = deltaX;
}
return vertices;
}
/**
* Convert a grid index to a point (the min x/y/z for the given grid box).
*/
public static float[] gridIdxToPoint(Grid grid, int idx)
{
int[] gridIdx = new int[3];
int ydiv = grid.getDivision()[0];
int zdiv = ydiv * grid.getDivision()[1];
gridIdx[2] = idx / zdiv;
idx -= gridIdx[2] * zdiv;
gridIdx[1] = idx / ydiv;
idx -= gridIdx[1] * ydiv;
gridIdx[0] = idx;
float[] size = grid.getSize();
float[] point = new float[3];
for (int i = 0; i < 3; ++i) {
point[i] = gridIdx[i] * size[i] + grid.getMin()[i];
}
return point;
}
/**
* Calculate the smooth normals for a given mesh. These are used as the
* nominal normals for normal deltas & reconstruction.
*/
public static float[] calcSmoothNormals(float[] vertices, int[] indices)
{
int vc = vertices.length / CTM_POSITION_ELEMENT_COUNT;
int tc = indices.length / 3;
float[] smoothNormals = new float[vc * CTM_NORMAL_ELEMENT_COUNT];//no setting to 0 needed in Java compared to C
// Calculate sums of all neighboring triangle normals for each vertex
for (int i = 0; i < tc; ++i) {
// Get triangle corner indices
int[] tri = Arrays.copyOfRange(indices, i*3, i*3+3);
// Calculate the normalized cross product of two triangle edges (i.e. the
// flat triangle normal)
float[] v1 = new float[3];
float[] v2 = new float[3];
for (int j = 0; j < 3; ++j) {
v1[j] = vertices[tri[1] * 3 + j] - vertices[tri[0] * 3 + j];
v2[j] = vertices[tri[2] * 3 + j] - vertices[tri[0] * 3 + j];
}
float[] n = new float[3];
n[0] = v1[1] * v2[2] - v1[2] * v2[1];
n[1] = v1[2] * v2[0] - v1[0] * v2[2];
n[2] = v1[0] * v2[1] - v1[1] * v2[0];
float len = (float) sqrt(n[0] * n[0] + n[1] * n[1] + n[2] * n[2]);
if (len > 1e-10f) {
len = 1.0f / len;
} else {
len = 1.0f;
}
for (int j = 0; j < 3; ++j) {
n[j] *= len;
}
// Add the flat normal to all three triangle vertices
for (int k = 0; k < 3; ++k) {
for (int j = 0; j < 3; ++j) {
smoothNormals[tri[k] * 3 + j] += n[j];
}
}
}
// Normalize the normal sums, which gives the unit length smooth normals
for (int i = 0; i < vc; ++i) {
float len = (float) sqrt(smoothNormals[i * 3] * smoothNormals[i * 3]
+ smoothNormals[i * 3 + 1] * smoothNormals[i * 3 + 1]
+ smoothNormals[i * 3 + 2] * smoothNormals[i * 3 + 2]);
if (len > 1e-10f) {
len = 1.0f / len;
} else {
len = 1.0f;
}
for (int j = 0; j < 3; ++j) {
smoothNormals[i * 3 + j] *= len;
}
}
return smoothNormals;
}
/**
* Create an ortho-normalized coordinate system where the Z-axis is aligned
* with the given normal. Note 1: This function is central to how the
* compressed normal data is interpreted, and it can not be changed
* (mathematically) without making the coder/decoder incompatible with other
* versions of the library! Note 2: Since we do this for every single
* normal, this routine needs to be fast. The current implementation uses:
* 12 MUL, 1 DIV, 1 SQRT, ~6 ADD.
*/
public static float[] makeNormalCoordSys(float[] normals, int offset)
{
float[] m = new float[9];
m[6] = normals[offset];
m[7] = normals[offset + 1];
m[8] = normals[offset + 2];
// Calculate a vector that is guaranteed to be orthogonal to the normal, non-
// zero, and a continuous function of the normal (no discrete jumps):
// X = (0,0,1) x normal + (1,0,0) x normal
m[0] = -normals[offset + 1];
m[1] = normals[offset] - normals[offset + 2];
m[2] = normals[offset + 1];
// Normalize the new X axis (note: |x[2]| = |x[0]|)
float len = (float) sqrt(2.0 * m[0] * m[0] + m[1] * m[1]);
if (len > 1.0e-20f) {
len = 1.0f / len;
m[0] *= len;
m[1] *= len;
m[2] *= len;
}
// Let Y = Z x X (no normalization needed, since |Z| = |X| = 1)
m[3 + 0] = m[6 + 1] * m[2] - m[6 + 2] * m[1];
m[3 + 1] = m[6 + 2] * m[0] - m[6 + 0] * m[2];
m[3 + 2] = m[6 + 0] * m[1] - m[6 + 1] * m[0];
return m;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy