Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
package morphling
import cats.*
import cats.data.NonEmptyList
import cats.free.*
import glass.*
/**
* The base trait for the schema GADT.
*
* @define PDefn
* The GADT type constructor for a sum type which defines the set of primitive types used in the schema.
* @define IDefn
* The type of the Scala value to be produced (or consumed) by an interpreter of the schema. Also known as the "index"
* type of the schema.
* @define FDefn
* The functor through which the structure of the schema will be interpreted. This will almost always be a fixpoint
* type such as [[morphling.HFix.HCofree]], which is used to introduce the ability to create recursive
* (tree-structured) schema.
*
* @tparam P
* $PDefn
* @tparam F
* $FDefn
* @tparam I
* $IDefn
*/
sealed trait SchemaF[P[_], F[_], I] {
/**
* HFunctor operation which allows transformation of the functor through which the structure of the schema will be
* interpreted.
*
* Defining this operation directly on the SchemaF type rather than in [[morphling.SchemaF.schemaFHFunctor]]
* simplifies type inference.
*/
def hfmap[G[_]](nt: F ~> G): SchemaF[P, G, I]
/**
* HFunctor operation which allows transformation of the primitive algebra of the schema.
*
* Defining this operation directly on the SchemaF type rather than in [[morphling.SchemaF.schemaFHFunctor]]
* simplifies type inference.
*/
def pmap[Q[_]](nt: P ~> Q): SchemaF[Q, F, I]
}
object SchemaF {
implicit def schemaFHFunctor[P[_]]: HFunctor[SchemaF[P, *[_], *]] = new HFunctor[SchemaF[P, *[_], *]] {
def hlift[M[_], N[_]](nt: M ~> N): SchemaF[P, M, *] ~> SchemaF[P, N, *] =
new (SchemaF[P, M, *] ~> SchemaF[P, N, *]) {
def apply[I](fa: SchemaF[P, M, I]): SchemaF[P, N, I] = fa.hfmap(nt)
}
}
}
/**
* Schema constructor that wraps a value of an underlying GADT of allowed primitive types.
*
* The underlying GADT defines a set of types via GADT constructors; see [[morphling.protocol.SType]] for an example.
* This set of types defines what types may be treated as primitive (and have parsing/ serialization/etc deferred to an
* external handler) when interpreting a schema value. For example, one might want to construct a GADT for for the Scala
* primitive types as such:
*
* {{{
* sealed trait SType[I]
*
* case object SNullT extends SType[Unit]
* case object SBoolT extends SType[Boolean]
*
* case object SByteT extends SType[Byte]
* case object SShortT extends SType[Short]
* case object SIntT extends SType[Int]
* case object SLongT extends SType[Long]
*
* case object SFloatT extends SType[Float]
* case object SDoubleT extends SType[Double]
*
* case object SCharT extends SType[Char]
* case object SStrT extends SType[String]
* }}}
*
* This example treats String values as primitive as well, even though strictly speaking they're reference types, just
* because virtually any interpreter for a schema algebra will not want to represent strings in terms of sum or product
* types. The same might hold true for, for example, [[scala.Array]] but for the purposes of this example issues related
* to `ClassManifest` instances would introduce excessive complexity.
*
* @tparam P
* $PDefn
* @tparam F
* $FDefn
* @tparam I
* $IDefn
* @param prim
* value identifying a primitive type.
*/
final case class PrimSchema[P[_], F[_], I](prim: P[I]) extends SchemaF[P, F, I] {
def hfmap[G[_]](nt: F ~> G): PrimSchema[P, G, I] = PrimSchema[P, G, I](prim)
def pmap[Q[_]](nt: P ~> Q): PrimSchema[Q, F, I] = PrimSchema[Q, F, I](nt(prim))
}
/**
* Constructor that enables creation of schema for sum types.
*
* Each constructor of the sum type `I` is represented as a member of the list of alternatives. Each alternative defines
* a prism between a single constructor of the sum type, and an underlying type describing the arguments demanded by
* that constructor.
*
* Consider the following sum type. The first constructor takes no arguments; the second takes two.
*
* {{{
* sealed trait Role
*
* case object User extends Role
* case class Administrator(department: String, subordinateCount: Int) extends Role
* }}}
*
* A schema value for this type looks like:
*
* {{{
* val roleSchema = oneOf(
* alt[Unit, Prim, Role, Unit](
* "user",
* Schema.empty,
* (_: Unit) => User,
* {
* case User => Some(Unit)
* case _ => None
* }
* ) ::
* alt[Unit, Prim, Role, Administrator](
* "administrator",
* rec[Prim, Administrator](
* (
* required("department", Prim.str, (_: Administrator).department),
* required("subordinateCount", Prim.int, (_: Administrator).subordinateCount)
* ).mapN(Administrator.apply)
* ),
* identity,
* {
* case a @ Administrator(_, _) => Some(a)
* case _ => None
* }
* ) :: Nil
* )
* }}}
*
* @tparam P
* $PDefn
* @tparam F
* $FDefn
* @tparam I
* $IDefn
*/
final case class OneOfSchema[P[_], F[_], I](alts: NonEmptyList[Alt[F, I, ?]], discriminator: Option[String] = None)
extends SchemaF[P, F, I] {
def hfmap[G[_]](nt: F ~> G): OneOfSchema[P, G, I] = OneOfSchema[P, G, I](alts.map(_.hfmap(nt)), discriminator)
def pmap[Q[_]](nt: P ~> Q): OneOfSchema[Q, F, I] = OneOfSchema[Q, F, I](alts, discriminator)
}
/**
* A prism between a base type containing the arguments required by a single constructor of a sum type, and that sum
* type, along with the schema for the base type is used to describe those constructor arguments. The identifier is used
* to distinguish which constructor is being represented in the serialized form.
*
* @define IDefn
* The type of the Scala value to be produced (or consumed) by an interpreter of the schema. Also known as the "index"
* type of the schema.
*
* @define FDefn
* The functor through which the structure of the schema will be interpreted. This will almost always be a fixpoint
* type such as [[morphling.HFix.HCofree]], which is used to introduce the ability to create recursive
* (tree-structured) schema.
*
* @tparam F
* $FDefn
* @tparam I
* $IDefn
* @tparam I0
* The base type which corresponds to the arguments to the selected constructor.
* @param id
* The unique identifier of the constructor
* @param base
* The schema for the `I0` type
* @param subset
* Subset between the sum type and the selected constructor.
*/
final case class Alt[F[_], I, I0](id: String, base: F[I0], subset: Subset[I, I0]) {
def hfmap[G[_]](nt: F ~> G): Alt[G, I, I0] = Alt(id, nt(base), subset)
}
/**
* Wrapper for the free applicative structure which is used to construct and disassemble values of product types.
*
* @tparam P
* $PDefn
* @tparam F
* $FDefn
* @tparam I
* $IDefn
* @param props
* the free applicative value composed of zero or more PropSchema instances
*/
final case class RecordSchema[P[_], F[_], I](props: FreeApplicative[PropSchema[I, F, *], I]) extends SchemaF[P, F, I] {
def hfmap[G[_]](nt: F ~> G): RecordSchema[P, G, I] =
RecordSchema[P, G, I](props.compile[PropSchema[I, G, *]](PropSchema.propSchemaHFunctor[I].hlift[F, G](nt)))
def pmap[Q[_]](nt: P ~> Q): RecordSchema[Q, F, I] = RecordSchema[Q, F, I](props)
}
/**
* Base trait for values which describe record properties.
*
* @define FDefn
* The functor through which the structure of the schema will be interpreted. This will almost always be a fixpoint
* type such as [[morphling.HFix.HCofree]], which is used to introduce the ability to create recursive
* (tree-structured) schema.
*
* @tparam O
* The record type.
* @tparam F
* $FDefn
* @tparam I
* The type of the property value.
*/
sealed trait PropSchema[O, F[_], I] {
def fieldName: String
def extract: Extract[O, I]
def hfmap[G[_]](nt: F ~> G): PropSchema[O, G, I]
}
/**
* Class describing a required property of a record.
*
* @param fieldName
* The name of the property.
* @param base
* Schema for the property's value type.
* @param extract
* Extract lens from the record type to the property.
* @param default
* Optional default value, for use in the case that a serialized form is missing the property.
*/
final case class Required[O, F[_], I](
fieldName: String,
base: F[I],
extract: Extract[O, I],
default: Option[I]
) extends PropSchema[O, F, I] {
def hfmap[G[_]](nt: F ~> G): PropSchema[O, G, I] =
Required(fieldName, nt(base), extract, default)
}
/**
* Class describing an optional property of a record. Since in many serialized forms optional properties may be omitted
* entirely from the serialized form, a distinct type is needed in order to be able to correctly interpret the absence
* of a field.
*
* @param fieldName
* The name of the property.
* @param base
* Schema for the property's value type.
* @param extract
* Extract lens from the record type to the property.
*/
final case class Optional[O, F[_], I](
fieldName: String,
base: F[I],
extract: Extract[O, Option[I]]
) extends PropSchema[O, F, Option[I]] {
def hfmap[G[_]](nt: F ~> G): PropSchema[O, G, Option[I]] =
Optional(fieldName, nt(base), extract)
}
/**
* Class describing an optional property of a record that is always absent.
*
* @param fieldName
* The name of the property.
* @param extract
* Extract lens from the record type to the property.
*/
final case class Absent[O, F[_], I](
fieldName: String,
extract: Extract[O, Option[I]]
) extends PropSchema[O, F, Option[I]] {
def hfmap[G[_]](nt: F ~> G): PropSchema[O, G, Option[I]] =
Absent(fieldName, extract)
}
/**
* Class describing a constant (non-serializable) property of a record.
* @param fieldName
* The name of the property.
* @param value
* The value of the property.
* @param extract
* Extract lens from the record type to the property.
*/
final case class Constant[O, F[_], I](
fieldName: String,
value: I,
extract: Extract[O, I]
) extends PropSchema[O, F, I] {
override def hfmap[G[_]](nt: F ~> G): PropSchema[O, G, I] =
this.asInstanceOf[PropSchema[O, G, I]]
}
object PropSchema {
implicit def propSchemaHFunctor[O]: HFunctor[PropSchema[O, *[_], *]] =
new HFunctor[PropSchema[O, *[_], *]] {
def hlift[M[_], N[_]](nt: M ~> N): PropSchema[O, M, *] ~> PropSchema[O, N, *] =
new (PropSchema[O, M, *] ~> PropSchema[O, N, *]) {
def apply[I](ps: PropSchema[O, M, I]): PropSchema[O, N, I] = ps.hfmap(nt)
}
}
private def extract[A, B](f: A => B): Extract[A, B] = (s: A) => f(s)
def contraNT[O, N, F[_]](f: N => O): PropSchema[O, F, *] ~> PropSchema[N, F, *] =
new (PropSchema[O, F, *] ~> PropSchema[N, F, *]) {
def apply[I](pso: PropSchema[O, F, I]): PropSchema[N, F, I] =
pso match {
case Required(n, s, g, d) => Required(n, s, extract(f) >> g, d)
case opt: Optional[O, F, i] => Optional(opt.fieldName, opt.base, extract(f) >> opt.extract)
case Constant(fn, v, g) => Constant(fn, v, extract(f) >> g)
case abs: Absent[O, F, i] => Absent(abs.fieldName, extract(f) >> abs.extract)
}
}
}
case class IsoSchema[P[_], F[_], I, J](base: F[I], eqv: Equivalent[I, J]) extends SchemaF[P, F, J] {
def hfmap[G[_]](nt: F ~> G): IsoSchema[P, G, I, J] = IsoSchema(nt(base), eqv)
def pmap[Q[_]](nt: P ~> Q): IsoSchema[Q, F, I, J] = IsoSchema(base, eqv)
}