morphling.Schema.scala Maven / Gradle / Ivy
The newest version!
package morphling
import cats.*
import cats.arrow.Profunctor
import cats.data.NonEmptyList
import cats.free.*
import glass.{Property as TProp, *}
import morphling.HFix.*
/**
* Data types and smart constructors which simplify the creation of schema values.
*
* @define PDefn
* The GADT type constructor for a sum type which defines the set of primitive types used in the schema.
* @define IDefn
* The type of the Scala value to be produced (or consumed) by an interpreter of the schema. Also known as the "index"
* type of the schema.
* @define ODefn
* The type of a Scala record - an object or a tuple, the property of which is being defined.
* @define ADefn
* The type of the annotation applied to each node of the schema
*/
object Schema {
/**
* The type of an unannotated schema.
*
* This is an alias for the HFix fixpoint applied to the SchemaF type constructor.
*
* @tparam P
* $PDefn
* @tparam I
* $IDefn
*/
type Schema[P[_], I] = HFix[[Y[_], Z] =>> SchemaF[P, Y, Z], I]
/**
* The type of free applicative values which are used to capture the structure of individual record properties.
*
* @tparam P
* $PDefn
* @tparam O
* $ODefn
* @tparam I
* $IDefn
*/
type Prop[P[_], O, I] = FreeApplicative[PropSchema[O, Schema[P, _], _], I]
given [P[_], O]: Applicative[Prop[P, O, _]] =
FreeApplicative.freeApplicative[PropSchema[O, Schema[P, _], _]]
given [P[_]]: Profunctor[[Y, Z] =>> Prop[P, Y, Z]] =
new Profunctor[[Y, Z] =>> Prop[P, Y, Z]] {
override def dimap[O, I, N, J](prop: Prop[P, O, I])(f: N => O)(g: I => J): Prop[P, N, J] =
prop
.compile[PropSchema[N, Schema[P, _], _]](
PropSchema.contraNT[O, N, Schema[P, _]](f)
)
.map(g)
}
/**
* The type of free applicative values which are used to capture the structure of record (product) types.
*
* @tparam P
* $PDefn
* @tparam R
* The type of the Scala value to be produced (or consumed) by an interpreter of the schema. This is usually the
* type of a record - an object or a tuple.
*/
type Props[P[_], R] = Prop[P, R, R]
/**
* Lifts a SchemaF value into an unannotated Schema
*
* @tparam P
* $PDefn
* @tparam I
* $IDefn
* @param sf
* The value to be annotated
* @return
* the newly constructed schema value
*/
def schema[P[_], I](sf: => SchemaF[P, Schema[P, _], I]): Schema[P, I] =
hfix[[Y[_], Z] =>> SchemaF[P, Y, Z], I](sf)
/**
* Lifts a value in an algebra of primitives into an unannotated Schema
*
* @tparam P
* $PDefn
* @tparam I
* $IDefn
* @param p
* a value of the `P` algebra
* @return
* the newly constructed schema value
*/
def prim[P[_], I](p: P[I]): Schema[P, I] =
schema(PrimSchema[P, Schema[P, _], I](p))
/**
* Builds an un-annotated schema for a record type from the free applicative capture of that record's structure.
*
* @tparam P
* $PDefn
* @tparam I
* $IDefn
* @param props
* The free-applicative value that captures the structure of the record type.
*/
def rec[P[_], I](props: Props[P, I]): Schema[P, I] =
schema(RecordSchema[P, Schema[P, _], I](props))
/**
* Smart constructor for required Prop instances.
*
* @tparam P
* $PDefn
* @tparam O
* $ODefn
* @tparam I
* $IDefn
* @param fieldName
* name of the record property
* @param valueSchema
* schema for the record property's type
* @param extract
* Extract lens from the record type to the property's value
*/
def required[P[_], O, I](fieldName: String, valueSchema: Schema[P, I], extract: Extract[O, I]): Prop[P, O, I] =
FreeApplicative.lift[PropSchema[O, Schema[P, _], _], I](
Required[O, Schema[P, _], I](fieldName, valueSchema, extract, None)
)
/**
* Smart constructor for required Prop instances, with a default provided for the case where a serialized form is
* missing the required field.
*
* @tparam P
* $PDefn
* @tparam O
* $ODefn
* @tparam I
* $IDefn
* @param fieldName
* Name of the record property
* @param valueSchema
* Schema for the record property's type
* @param default
* Default value for use in the case that a serialized form is missing the required field.
* @param extract
* Extract lens from the record type to the property's value
*/
def property[P[_], O, I](
fieldName: String,
valueSchema: Schema[P, I],
default: I,
extract: Extract[O, I]
): Prop[P, O, I] =
FreeApplicative.lift[PropSchema[O, Schema[P, _], _], I](
Required[O, Schema[P, _], I](fieldName, valueSchema, extract, Some(default))
)
/**
* Smart constructor for optional Prop instances.
*
* @tparam P
* $PDefn
* @tparam O
* $ODefn
* @tparam I
* $IDefn
* @tparam OI
* hack for proper overload resolution
* @param fieldName
* name of the record property
* @param valueSchema
* schema for the record property's type
* @param extract
* Extract lens from the record type to the property's value
*/
def optional[P[_], O, I, OI <: Option[I]](
fieldName: String,
valueSchema: Schema[P, I],
extract: Extract[O, OI]
): Prop[P, O, Option[I]] =
FreeApplicative.lift[PropSchema[O, Schema[P, _], _], Option[I]](
Optional[O, Schema[P, _], I](fieldName, valueSchema, extract.asInstanceOf[Extract[O, Option[I]]])
)
/**
* Smart constructor for optional Prop instances.
*
* @tparam P
* $PDefn
* @tparam O
* $ODefn
* @tparam I
* $IDefn
* @param fieldName
* name of the record property
* @param valueSchema
* schema for the record property's type
* @param property
* Property lens from the record type to the property's value
*/
def optional[P[_], O, I](fieldName: String, valueSchema: Schema[P, I], property: TProp[O, I]): Prop[P, O, Option[I]] =
FreeApplicative.lift[PropSchema[O, Schema[P, _], _], Option[I]](
Optional[O, Schema[P, _], I](fieldName, valueSchema, property.getOption(_))
)
/**
* Smart constructor for absent Prop instances.
*
* @tparam P
* $PDefn
*/
def absent[P[_]]: AbsentBuilder[P] = new AbsentBuilder[P]
/**
* Builder class used to construct a Absent property
*/
final class AbsentBuilder[P[_]] {
def apply[O, I, OI <: Option[I]](fieldName: String, extract: Extract[O, OI]): Prop[P, O, Option[I]] =
FreeApplicative.lift[PropSchema[O, Schema[P, _], _], Option[I]](
Absent[O, Schema[P, _], I](fieldName, extract.asInstanceOf[Extract[O, Option[I]]])
)
/*
def apply[O, I](fieldName: String, property: TProp[O, I]): Prop[P, O, Option[I]] = {
FreeApplicative.lift[PropSchema[O, Schema[P, _], _], Option[I]](
Absent[O, Schema[P, _], I](fieldName, property.getOption _)
)
}
*/
}
/**
* Smart constructor for constant Prop instances.
*
* @tparam P
* $PDefn
*/
def constant[P[_]]: ConstantBuilder[P] = new ConstantBuilder[P]
/**
* Builder class used to construct a Constant property
*/
final class ConstantBuilder[P[_]] {
def apply[O, I](fieldName: String, value: I, extract: Extract[O, I]): Prop[P, O, I] =
FreeApplicative.lift[PropSchema[O, Schema[P, _], _], I](
Constant(fieldName, value, extract)
)
}
/**
* The unannotated empty record schema, representing a constant value.
*
* @tparam P
* $PDefn
*/
def const[P[_], O](obj: O): Schema[P, O] =
rec[P, O](FreeApplicative.pure[PropSchema[O, Schema[P, _], _], O](obj))
/*
Need to re-implement Constructors first
/** Builds an un-annotated schema for the sum type `I` from an HList of alternatives.
*
* Each alternative value in the list describes a single constructor of `I`.
* For example, to construct the schema for [[scala.util.Either]] one would provide
* two alternatives, one for the `Left` constructor and one for `Right`.
*
* An easier-to-read type signature for this function is below:
*
* {{{
* def oneOf[P[_], I](alts: NonEmptyList[Alt[Schema[P, *], I, _]]): Schema[P, I]
* }}}
*
* @tparam P $PDefn
* @tparam I $IDefn
*/
def oneOf[P[_], I]: ToOneOf[P, I] = new ToOneOf[P, I]
/** Builder class used to construct a OneOfSchema value from
* an HList of alternatives which are proven to provide handling for
* every constructor of the sum type `I`.
*/
final class ToOneOf[P[_], I] {
def apply[H <: HList](ctrs: H)(implicit ev: Constructors[I, Alt[Schema[P, *], I, *], H]): Schema[P, I] = {
schema(OneOfSchema[P, Schema[P, *], I](ev.toNel(ctrs)))
}
}
def oneOfDiscr[P[_], I](discriminatorField: String): ToOneOfWithDiscriminator[P, I] =
new ToOneOfWithDiscriminator[P, I](discriminatorField)
/** Builder class used to construct a OneOfSchema value with discriminator field
* from an HList of alternatives which are proven to provide handling for
* every constructor of the sum type `I`.
*/
final class ToOneOfWithDiscriminator[P[_], I](discriminatorField: String) {
def apply[H <: HList](ctrs: H)(implicit ev: Constructors[I, Alt[Schema[P, *], I, *], H]): Schema[P, I] = {
schema(OneOfSchema[P, Schema[P, *], I](ev.toNel(ctrs), Some(discriminatorField)))
}
}
*/
/**
* Builds an un-annotated schema for the sum type `I` from a list of alternatives.
*
* Each alternative value in the list describes a single constructor of `I`. For example, to construct the schema for
* [[scala.util.Either]] one would provide two alternatives, one for the `Left` constructor and one for `Right`.
*
* This convenience constructor is unsafe in that the compiler will not prove that handling is present for every
* constructor of your sum type; however, it may sometimes be needed in the case that failures of the Scala compiler
* to correctly identify all the constructors of a sum type make it otherwise impossible to build a schema value.
*
* @tparam P
* $PDefn
* @tparam I
* $IDefn
*/
def unsafeOneOf[P[_], I](alts: NonEmptyList[Alt[Schema[P, _], I, ?]]): Schema[P, I] =
schema(OneOfSchema[P, Schema[P, _], I](alts))
def unsafeOneOfDiscr[P[_], I](discriminatorField: String)(alts: NonEmptyList[Alt[Schema[P, _], I, ?]]): Schema[P, I] =
schema(OneOfSchema[P, Schema[P, _], I](alts, Some(discriminatorField)))
/**
* Convenience constructor for oneOf schema alternatives.
*
* @tparam P
* $PDefn
* @tparam I
* $IDefn
* @tparam J
* The type of the base value which can be mapped into the `I` algebra.
* @param id
* The unique identifier of the constructor
* @param base
* The schema for the `J` type
* @param subset
* Prism between the sum type and the selected constructor.
*/
def alt[P[_], I, J](id: String, base: Schema[P, J], subset: Subset[I, J]): Alt[Schema[P, _], I, J] =
Alt[Schema[P, _], I, J](id, base, subset)
/**
* HAlgebra for primitive type constructor transformation.
*/
def hfmapAlg[P[_], Q[_]](nt: P ~> Q): SchemaF[P, Schema[Q, _], _] ~> Schema[Q, _] =
new HAlgebra[[Y[_], Z] =>> SchemaF[P, Y, Z], Schema[Q, _]] {
def apply[I](s: SchemaF[P, Schema[Q, _], I]): Schema[Q, I] = hfix(s.pmap(nt))
}
given HFunctor[Schema] = new HFunctor[Schema] {
def hlift[P[_], Q[_]](nt: P ~> Q): Schema[P, _] ~> Schema[Q, _] = cataNT(hfmapAlg(nt))
}
extension [P[_], I](base: Schema[P, I]) {
def composeIso[J](eqv: Equivalent[I, J]): Schema[P, J] =
schema(IsoSchema[P, Schema[P, _], I, J](base, eqv))
}
}