All Downloads are FREE. Search and download functionalities are using the official Maven repository.

sun.reflect.generics.factory.GenericsFactory Maven / Gradle / Ivy

Go to download

Adapted (moved from java.beans to ajava.beans) OpenJDK8 javabeans for Android. It's used by A-Jetty (Jetty 9.2 adapted for Android.)

The newest version!
/*
 * Copyright (c) 2003, 2006, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package sun.reflect.generics.factory;

import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.lang.reflect.TypeVariable;
import java.lang.reflect.WildcardType;
import sun.reflect.generics.tree.FieldTypeSignature;

/**
 * A factory interface for reflective objects representing generic types.
 * Implementors (such as core reflection or JDI, or possibly javadoc
 * will manufacture instances of (potentially) different classes
 * in response to invocations of the methods described here.
 * 

The intent is that reflective systems use these factories to * produce generic type information on demand. * Certain components of such reflective systems can be independent * of a specific implementation by using this interface. For example, * repositories of generic type information are initialized with a * factory conforming to this interface, and use it to generate the * tpe information they are required to provide. As a result, such * repository code can be shared across different reflective systems. */ public interface GenericsFactory { /** * Returns a new type variable declaration. Note that name * may be empty (but not null). If bounds is * empty, a bound of java.lang.Object is used. * @param name The name of the type variable * @param bounds An array of abstract syntax trees representing * the upper bound(s) on the type variable being declared * @return a new type variable declaration * @throws NullPointerException - if any of the actual parameters * or any of the elements of bounds are null. */ TypeVariable makeTypeVariable(String name, FieldTypeSignature[] bounds); /** * Return an instance of the ParameterizedType interface * that corresponds to a generic type instantiation of the * generic declaration declaration with actual type arguments * typeArgs. * If owner is null, the declaring class of * declaration is used as the owner of this parameterized * type. *

This method throws a MalformedParameterizedTypeException * under the following circumstances: * If the type declaration does not represent a generic declaration * (i.e., it is not an instance of GenericDeclaration). * If the number of actual type arguments (i.e., the size of the * array typeArgs) does not correspond to the number of * formal type arguments. * If any of the actual type arguments is not an instance of the * bounds on the corresponding formal. * @param declaration - the generic type declaration that is to be * instantiated * @param typeArgs - the list of actual type arguments * @return - a parameterized type representing the instantiation * of the declaration with the actual type arguments * @throws MalformedParameterizedTypeException - if the instantiation * is invalid * @throws NullPointerException - if any of declaration * , typeArgs * or any of the elements of typeArgs are null */ ParameterizedType makeParameterizedType(Type declaration, Type[] typeArgs, Type owner); /** * Returns the type variable with name name, if such * a type variable is declared in the * scope used to create this factory. * Returns null otherwise. * @param name - the name of the type variable to search for * @return - the type variable with name name, or null * @throws NullPointerException - if any of actual parameters are * null */ TypeVariable findTypeVariable(String name); /** * Returns a new wildcard type variable. If * ubs is empty, a bound of java.lang.Object is used. * @param ubs An array of abstract syntax trees representing * the upper bound(s) on the type variable being declared * @param lbs An array of abstract syntax trees representing * the lower bound(s) on the type variable being declared * @return a new wildcard type variable * @throws NullPointerException - if any of the actual parameters * or any of the elements of ubs or lbsare * null */ WildcardType makeWildcard(FieldTypeSignature[] ubs, FieldTypeSignature[] lbs); Type makeNamedType(String name); /** * Returns a (possibly generic) array type. * If the component type is a parameterized type, it must * only have unbounded wildcard arguemnts, otherwise * a MalformedParameterizedTypeException is thrown. * @param componentType - the component type of the array * @return a (possibly generic) array type. * @throws MalformedParameterizedTypeException if componentType * is a parameterized type with non-wildcard type arguments * @throws NullPointerException - if any of the actual parameters * are null */ Type makeArrayType(Type componentType); /** * Returns the reflective representation of type byte. * @return the reflective representation of type byte. */ Type makeByte(); /** * Returns the reflective representation of type boolean. * @return the reflective representation of type boolean. */ Type makeBool(); /** * Returns the reflective representation of type short. * @return the reflective representation of type short. */ Type makeShort(); /** * Returns the reflective representation of type char. * @return the reflective representation of type char. */ Type makeChar(); /** * Returns the reflective representation of type int. * @return the reflective representation of type int. */ Type makeInt(); /** * Returns the reflective representation of type long. * @return the reflective representation of type long. */ Type makeLong(); /** * Returns the reflective representation of type float. * @return the reflective representation of type float. */ Type makeFloat(); /** * Returns the reflective representation of type double. * @return the reflective representation of type double. */ Type makeDouble(); /** * Returns the reflective representation of void. * @return the reflective representation of void. */ Type makeVoid(); }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy