org.eclipse.jetty.util.security.UnixCrypt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of a-jetty-base Show documentation
Show all versions of a-jetty-base Show documentation
A-Jetty Base can run on Android Java as well as on standard Java 7+ and it can run precompiled JSP/JSTL.
/*
* @(#)UnixCrypt.java 0.9 96/11/25
*
* Copyright (c) 1996 Aki Yoshida. All rights reserved.
*
* Permission to use, copy, modify and distribute this software
* for non-commercial or commercial purposes and without fee is
* hereby granted provided that this copyright notice appears in
* all copies.
*/
/**
* Unix crypt(3C) utility
*
* @version 0.9, 11/25/96
* @author Aki Yoshida
*/
/**
* modified April 2001
* by Iris Van den Broeke, Daniel Deville
*/
package org.eclipse.jetty.util.security;
/* ------------------------------------------------------------ */
/**
* Unix Crypt. Implements the one way cryptography used by Unix systems for
* simple password protection.
*
* @version $Id: UnixCrypt.java,v 1.1 2005/10/05 14:09:14 janb Exp $
* @author Greg Wilkins (gregw)
*/
public class UnixCrypt
{
/* (mostly) Standard DES Tables from Tom Truscott */
private static final byte[] IP = { /* initial permutation */
58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, 57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 };
/* The final permutation is the inverse of IP - no table is necessary */
private static final byte[] ExpandTr = { /* expansion operation */
32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, 24, 25, 26, 27, 28, 29,
28, 29, 30, 31, 32, 1 };
private static final byte[] PC1 = { /* permuted choice table 1 */
57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 };
private static final byte[] Rotates = { /* PC1 rotation schedule */
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 };
private static final byte[] PC2 = { /* permuted choice table 2 */
9, 18, 14, 17, 11, 24, 1, 5, 22, 25, 3, 28, 15, 6, 21, 10, 35, 38, 23, 19, 12, 4, 26, 8, 43, 54, 16, 7, 27, 20, 13, 2,
0, 0, 41, 52, 31, 37, 47, 55, 0, 0, 30, 40, 51, 45, 33, 48, 0, 0, 44, 49, 39, 56, 34, 53, 0, 0, 46, 42, 50, 36, 29, 32 };
private static final byte[][] S = { /* 48->32 bit substitution tables */
/* S[1] */
{ 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9,
7, 3, 10, 5, 0, 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 },
/* S[2] */
{ 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12,
6, 9, 3, 2, 15, 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 },
/* S[3] */
{ 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2,
12, 5, 10, 14, 7, 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 },
/* S[4] */
{ 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3,
14, 5, 2, 8, 4, 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 },
/* S[5] */
{ 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12,
5, 6, 3, 0, 14, 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 },
/* S[6] */
{ 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4,
10, 1, 13, 11, 6, 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 },
/* S[7] */
{ 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, 1, 4, 11, 13, 12, 3, 7, 14, 10, 15,
6, 8, 0, 5, 9, 2, 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 },
/* S[8] */
{ 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10,
13, 15, 3, 5, 8, 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 } };
private static final byte[] P32Tr = { /* 32-bit permutation function */
16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 };
private static final byte[] CIFP = { /*
* compressed/interleaved
* permutation
*/
1, 2, 3, 4, 17, 18, 19, 20, 5, 6, 7, 8, 21, 22, 23, 24, 9, 10, 11, 12, 25, 26, 27, 28, 13, 14, 15, 16, 29, 30, 31, 32,
33, 34, 35, 36, 49, 50, 51, 52, 37, 38, 39, 40, 53, 54, 55, 56, 41, 42, 43, 44, 57, 58, 59, 60, 45, 46, 47, 48, 61, 62, 63, 64 };
private static final byte[] ITOA64 = { /* 0..63 => ascii-64 */
(byte) '.', (byte) '/', (byte) '0', (byte) '1', (byte) '2', (byte) '3', (byte) '4', (byte) '5', (byte) '6', (byte) '7', (byte) '8', (byte) '9', (byte) 'A',
(byte) 'B', (byte) 'C', (byte) 'D', (byte) 'E', (byte) 'F', (byte) 'G', (byte) 'H', (byte) 'I', (byte) 'J', (byte) 'K', (byte) 'L', (byte) 'M',
(byte) 'N', (byte) 'O', (byte) 'P', (byte) 'Q', (byte) 'R', (byte) 'S', (byte) 'T', (byte) 'U', (byte) 'V', (byte) 'W', (byte) 'X', (byte) 'Y',
(byte) 'Z', (byte) 'a', (byte) 'b', (byte) 'c', (byte) 'd', (byte) 'e', (byte) 'f', (byte) 'g', (byte) 'h', (byte) 'i', (byte) 'j', (byte) 'k',
(byte) 'l', (byte) 'm', (byte) 'n', (byte) 'o', (byte) 'p', (byte) 'q', (byte) 'r', (byte) 's', (byte) 't', (byte) 'u', (byte) 'v', (byte) 'w',
(byte) 'x', (byte) 'y', (byte) 'z' };
/* ===== Tables that are initialized at run time ==================== */
private static final byte[] A64TOI = new byte[128]; /* ascii-64 => 0..63 */
/* Initial key schedule permutation */
private static final long[][] PC1ROT = new long[16][16];
/* Subsequent key schedule rotation permutations */
private static final long[][][] PC2ROT = new long[2][16][16];
/* Initial permutation/expansion table */
private static final long[][] IE3264 = new long[8][16];
/* Table that combines the S, P, and E operations. */
private static final long[][] SPE = new long[8][64];
/* compressed/interleaved => final permutation table */
private static final long[][] CF6464 = new long[16][16];
/* ==================================== */
static
{
byte[] perm = new byte[64];
byte[] temp = new byte[64];
// inverse table.
for (int i = 0; i < 64; i++)
A64TOI[ITOA64[i]] = (byte) i;
// PC1ROT - bit reverse, then PC1, then Rotate, then PC2
for (int i = 0; i < 64; i++)
perm[i] = (byte) 0;
for (int i = 0; i < 64; i++)
{
int k;
if ((k = PC2[i]) == 0) continue;
k += Rotates[0] - 1;
if ((k % 28) < Rotates[0]) k -= 28;
k = PC1[k];
if (k > 0)
{
k--;
k = (k | 0x07) - (k & 0x07);
k++;
}
perm[i] = (byte) k;
}
init_perm(PC1ROT, perm, 8);
// PC2ROT - PC2 inverse, then Rotate, then PC2
for (int j = 0; j < 2; j++)
{
int k;
for (int i = 0; i < 64; i++)
perm[i] = temp[i] = 0;
for (int i = 0; i < 64; i++)
{
if ((k = PC2[i]) == 0) continue;
temp[k - 1] = (byte) (i + 1);
}
for (int i = 0; i < 64; i++)
{
if ((k = PC2[i]) == 0) continue;
k += j;
if ((k % 28) <= j) k -= 28;
perm[i] = temp[k];
}
init_perm(PC2ROT[j], perm, 8);
}
// Bit reverse, intial permupation, expantion
for (int i = 0; i < 8; i++)
{
for (int j = 0; j < 8; j++)
{
int k = (j < 2) ? 0 : IP[ExpandTr[i * 6 + j - 2] - 1];
if (k > 32)
k -= 32;
else if (k > 0) k--;
if (k > 0)
{
k--;
k = (k | 0x07) - (k & 0x07);
k++;
}
perm[i * 8 + j] = (byte) k;
}
}
init_perm(IE3264, perm, 8);
// Compression, final permutation, bit reverse
for (int i = 0; i < 64; i++)
{
int k = IP[CIFP[i] - 1];
if (k > 0)
{
k--;
k = (k | 0x07) - (k & 0x07);
k++;
}
perm[k - 1] = (byte) (i + 1);
}
init_perm(CF6464, perm, 8);
// SPE table
for (int i = 0; i < 48; i++)
perm[i] = P32Tr[ExpandTr[i] - 1];
for (int t = 0; t < 8; t++)
{
for (int j = 0; j < 64; j++)
{
int k = (((j >> 0) & 0x01) << 5) | (((j >> 1) & 0x01) << 3)
| (((j >> 2) & 0x01) << 2)
| (((j >> 3) & 0x01) << 1)
| (((j >> 4) & 0x01) << 0)
| (((j >> 5) & 0x01) << 4);
k = S[t][k];
k = (((k >> 3) & 0x01) << 0) | (((k >> 2) & 0x01) << 1) | (((k >> 1) & 0x01) << 2) | (((k >> 0) & 0x01) << 3);
for (int i = 0; i < 32; i++)
temp[i] = 0;
for (int i = 0; i < 4; i++)
temp[4 * t + i] = (byte) ((k >> i) & 0x01);
long kk = 0;
for (int i = 24; --i >= 0;)
kk = ((kk << 1) | ((long) temp[perm[i] - 1]) << 32 | (temp[perm[i + 24] - 1]));
SPE[t][j] = to_six_bit(kk);
}
}
}
/**
* You can't call the constructer.
*/
private UnixCrypt()
{
}
/**
* Returns the transposed and split code of a 24-bit code into a 4-byte
* code, each having 6 bits.
*/
private static int to_six_bit(int num)
{
return (((num << 26) & 0xfc000000) | ((num << 12) & 0xfc0000) | ((num >> 2) & 0xfc00) | ((num >> 16) & 0xfc));
}
/**
* Returns the transposed and split code of two 24-bit code into two 4-byte
* code, each having 6 bits.
*/
private static long to_six_bit(long num)
{
return (((num << 26) & 0xfc000000fc000000L) | ((num << 12) & 0xfc000000fc0000L) | ((num >> 2) & 0xfc000000fc00L) | ((num >> 16) & 0xfc000000fcL));
}
/**
* Returns the permutation of the given 64-bit code with the specified
* permutataion table.
*/
private static long perm6464(long c, long[][] p)
{
long out = 0L;
for (int i = 8; --i >= 0;)
{
int t = (int) (0x00ff & c);
c >>= 8;
long tp = p[i << 1][t & 0x0f];
out |= tp;
tp = p[(i << 1) + 1][t >> 4];
out |= tp;
}
return out;
}
/**
* Returns the permutation of the given 32-bit code with the specified
* permutataion table.
*/
private static long perm3264(int c, long[][] p)
{
long out = 0L;
for (int i = 4; --i >= 0;)
{
int t = (0x00ff & c);
c >>= 8;
long tp = p[i << 1][t & 0x0f];
out |= tp;
tp = p[(i << 1) + 1][t >> 4];
out |= tp;
}
return out;
}
/**
* Returns the key schedule for the given key.
*/
private static long[] des_setkey(long keyword)
{
long K = perm6464(keyword, PC1ROT);
long[] KS = new long[16];
KS[0] = K & ~0x0303030300000000L;
for (int i = 1; i < 16; i++)
{
KS[i] = K;
K = perm6464(K, PC2ROT[Rotates[i] - 1]);
KS[i] = K & ~0x0303030300000000L;
}
return KS;
}
/**
* Returns the DES encrypted code of the given word with the specified
* environment.
*/
private static long des_cipher(long in, int salt, int num_iter, long[] KS)
{
salt = to_six_bit(salt);
long L = in;
long R = L;
L &= 0x5555555555555555L;
R = (R & 0xaaaaaaaa00000000L) | ((R >> 1) & 0x0000000055555555L);
L = ((((L << 1) | (L << 32)) & 0xffffffff00000000L) | ((R | (R >> 32)) & 0x00000000ffffffffL));
L = perm3264((int) (L >> 32), IE3264);
R = perm3264((int) (L & 0xffffffff), IE3264);
while (--num_iter >= 0)
{
for (int loop_count = 0; loop_count < 8; loop_count++)
{
long kp;
long B;
long k;
kp = KS[(loop_count << 1)];
k = ((R >> 32) ^ R) & salt & 0xffffffffL;
k |= (k << 32);
B = (k ^ R ^ kp);
L ^= (SPE[0][(int) ((B >> 58) & 0x3f)] ^ SPE[1][(int) ((B >> 50) & 0x3f)]
^ SPE[2][(int) ((B >> 42) & 0x3f)]
^ SPE[3][(int) ((B >> 34) & 0x3f)]
^ SPE[4][(int) ((B >> 26) & 0x3f)]
^ SPE[5][(int) ((B >> 18) & 0x3f)]
^ SPE[6][(int) ((B >> 10) & 0x3f)] ^ SPE[7][(int) ((B >> 2) & 0x3f)]);
kp = KS[(loop_count << 1) + 1];
k = ((L >> 32) ^ L) & salt & 0xffffffffL;
k |= (k << 32);
B = (k ^ L ^ kp);
R ^= (SPE[0][(int) ((B >> 58) & 0x3f)] ^ SPE[1][(int) ((B >> 50) & 0x3f)]
^ SPE[2][(int) ((B >> 42) & 0x3f)]
^ SPE[3][(int) ((B >> 34) & 0x3f)]
^ SPE[4][(int) ((B >> 26) & 0x3f)]
^ SPE[5][(int) ((B >> 18) & 0x3f)]
^ SPE[6][(int) ((B >> 10) & 0x3f)] ^ SPE[7][(int) ((B >> 2) & 0x3f)]);
}
// swap L and R
L ^= R;
R ^= L;
L ^= R;
}
L = ((((L >> 35) & 0x0f0f0f0fL) | (((L & 0xffffffff) << 1) & 0xf0f0f0f0L)) << 32 | (((R >> 35) & 0x0f0f0f0fL) | (((R & 0xffffffff) << 1) & 0xf0f0f0f0L)));
L = perm6464(L, CF6464);
return L;
}
/**
* Initializes the given permutation table with the mapping table.
*/
private static void init_perm(long[][] perm, byte[] p, int chars_out)
{
for (int k = 0; k < chars_out * 8; k++)
{
int l = p[k] - 1;
if (l < 0) continue;
int i = l >> 2;
l = 1 << (l & 0x03);
for (int j = 0; j < 16; j++)
{
int s = ((k & 0x07) + ((7 - (k >> 3)) << 3));
if ((j & l) != 0x00) perm[i][j] |= (1L << s);
}
}
}
/**
* Encrypts String into crypt (Unix) code.
*
* @param key the key to be encrypted
* @param setting the salt to be used
* @return the encrypted String
*/
public static String crypt(String key, String setting)
{
long constdatablock = 0L; /* encryption constant */
byte[] cryptresult = new byte[13]; /* encrypted result */
long keyword = 0L;
/* invalid parameters! */
if (key == null || setting == null) return "*"; // will NOT match under
// ANY circumstances!
int keylen = key.length();
for (int i = 0; i < 8; i++)
{
keyword = (keyword << 8) | ((i < keylen) ? 2 * key.charAt(i) : 0);
}
long[] KS = des_setkey(keyword);
int salt = 0;
for (int i = 2; --i >= 0;)
{
char c = (i < setting.length()) ? setting.charAt(i) : '.';
cryptresult[i] = (byte) c;
salt = (salt << 6) | (0x00ff & A64TOI[c]);
}
long rsltblock = des_cipher(constdatablock, salt, 25, KS);
cryptresult[12] = ITOA64[(((int) rsltblock) << 2) & 0x3f];
rsltblock >>= 4;
for (int i = 12; --i >= 2;)
{
cryptresult[i] = ITOA64[((int) rsltblock) & 0x3f];
rsltblock >>= 6;
}
return new String(cryptresult, 0, 13);
}
public static void main(String[] arg)
{
if (arg.length != 2)
{
System.err.println("Usage - java org.eclipse.util.UnixCrypt ");
System.exit(1);
}
System.err.println("Crypt=" + crypt(arg[0], arg[1]));
}
}