it.unimi.dsi.fastutil.booleans.BooleanArrays Maven / Gradle / Ivy
Show all versions of mongoose-api-common Show documentation
/* Generic definitions */
/* Assertions (useful to generate conditional code) */
/* Current type and class (and size, if applicable) */
/* Value methods */
/* Interfaces (keys) */
/* Interfaces (values) */
/* Abstract implementations (keys) */
/* Abstract implementations (values) */
/* Static containers (keys) */
/* Static containers (values) */
/* Implementations */
/* Synchronized wrappers */
/* Unmodifiable wrappers */
/* Other wrappers */
/* Methods (keys) */
/* Methods (values) */
/* Methods (keys/values) */
/* Methods that have special names depending on keys (but the special names depend on values) */
/* Equality */
/* Object/Reference-only definitions (keys) */
/* Primitive-type-only definitions (keys) */
/* Object/Reference-only definitions (values) */
/*
* Copyright (C) 2002-2016 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
*
* For the sorting and binary search code:
*
* Copyright (C) 1999 CERN - European Organization for Nuclear Research.
*
* Permission to use, copy, modify, distribute and sell this software and
* its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and that
* both that copyright notice and this permission notice appear in
* supporting documentation. CERN makes no representations about the
* suitability of this software for any purpose. It is provided "as is"
* without expressed or implied warranty.
*/
package it.unimi.dsi.fastutil.booleans;
import it.unimi.dsi.fastutil.Arrays;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.ints.IntArrays;
import java.util.Random;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;
/**
* A class providing static methods and objects that do useful things with
* type-specific arrays.
*
*
* In particular, the ensureCapacity()
, grow()
,
* trim()
and setLength()
methods allow to handle
* arrays much like array lists. This can be very useful when efficiency (or
* syntactic simplicity) reasons make array lists unsuitable.
*
*
* possible to load and save arrays of primitive types as sequences of elements
* in {@link java.io.DataInput} format (i.e., not as objects) or as sequences of
* lines of text.
*
*
Sorting
*
*
* There are several sorting methods available. The main theme is that of
* letting you choose the sorting algorithm you prefer (i.e., trading stability
* of mergesort for no memory allocation in quicksort). Several algorithms
* provide a parallel version, that will use the
* {@linkplain Runtime#availableProcessors() number of cores available}. Some
* algorithms also provide an explicit indirect sorting facility, which
* makes it possible to sort an array using the values in another array as
* comparator.
*
*
* All comparison-based algorithm have an implementation based on a
* type-specific comparator.
*
*
* As a general rule, sequential radix sort is significantly faster than
* quicksort or mergesort, in particular on random-looking data. In the parallel
* case, up to a few cores parallel radix sort is still the fastest, but at some
* point quicksort exploits parallelism better.
*
*
* If you are fine with not knowing exactly which algorithm will be run (in
* particular, not knowing exactly whether a support array will be allocated),
* the dual-pivot parallel sorts in {@link java.util.Arrays} are about 50%
* faster than the classical single-pivot implementation used here.
*
*
* In any case, if sorting time is important I suggest that you benchmark your
* sorting load with your data distribution and on your architecture.
*
* @see java.util.Arrays
*/
public class BooleanArrays {
private BooleanArrays() {
}
/** A static, final, empty array. */
public final static boolean[] EMPTY_ARRAY = {};
/**
* Ensures that an array can contain the given number of entries.
*
*
* If you cannot foresee whether this array will need again to be enlarged,
* you should probably use grow()
instead.
*
* @param array
* an array.
* @param length
* the new minimum length for this array.
* @return array
, if it contains length
entries or
* more; otherwise, an array with length
entries whose
* first array.length
entries are the same as those of
* array
.
*/
public static boolean[] ensureCapacity(final boolean[] array,
final int length) {
if (length > array.length) {
final boolean t[] =
new boolean[length];
System.arraycopy(array, 0, t, 0, array.length);
return t;
}
return array;
}
/**
* Ensures that an array can contain the given number of entries, preserving
* just a part of the array.
*
* @param array
* an array.
* @param length
* the new minimum length for this array.
* @param preserve
* the number of elements of the array that must be preserved in
* case a new allocation is necessary.
* @return array
, if it can contain length
entries
* or more; otherwise, an array with length
entries
* whose first preserve
entries are the same as those
* of array
.
*/
public static boolean[] ensureCapacity(final boolean[] array,
final int length, final int preserve) {
if (length > array.length) {
final boolean t[] =
new boolean[length];
System.arraycopy(array, 0, t, 0, preserve);
return t;
}
return array;
}
/**
* Grows the given array to the maximum between the given length and the
* current length multiplied by two, provided that the given length is
* larger than the current length.
*
*
* If you want complete control on the array growth, you should probably use
* ensureCapacity()
instead.
*
* @param array
* an array.
* @param length
* the new minimum length for this array.
* @return array
, if it can contain length
* entries; otherwise, an array with max(length
,
* array.length
/φ) entries whose first
* array.length
entries are the same as those of
* array
.
* */
public static boolean[] grow(final boolean[] array, final int length) {
if (length > array.length) {
final int newLength = (int) Math.max(
Math.min(2L * array.length, Arrays.MAX_ARRAY_SIZE), length);
final boolean t[] =
new boolean[newLength];
System.arraycopy(array, 0, t, 0, array.length);
return t;
}
return array;
}
/**
* Grows the given array to the maximum between the given length and the
* current length multiplied by two, provided that the given length is
* larger than the current length, preserving just a part of the array.
*
*
* If you want complete control on the array growth, you should probably use
* ensureCapacity()
instead.
*
* @param array
* an array.
* @param length
* the new minimum length for this array.
* @param preserve
* the number of elements of the array that must be preserved in
* case a new allocation is necessary.
* @return array
, if it can contain length
* entries; otherwise, an array with max(length
,
* array.length
/φ) entries whose first
* preserve
entries are the same as those of
* array
.
* */
public static boolean[] grow(final boolean[] array, final int length,
final int preserve) {
if (length > array.length) {
final int newLength = (int) Math.max(
Math.min(2L * array.length, Arrays.MAX_ARRAY_SIZE), length);
final boolean t[] =
new boolean[newLength];
System.arraycopy(array, 0, t, 0, preserve);
return t;
}
return array;
}
/**
* Trims the given array to the given length.
*
* @param array
* an array.
* @param length
* the new maximum length for the array.
* @return array
, if it contains length
entries or
* less; otherwise, an array with length
entries whose
* entries are the same as the first length
entries of
* array
.
*
*/
public static boolean[] trim(final boolean[] array, final int length) {
if (length >= array.length)
return array;
final boolean t[] =
length == 0 ? EMPTY_ARRAY : new boolean[length];
System.arraycopy(array, 0, t, 0, length);
return t;
}
/**
* Sets the length of the given array.
*
* @param array
* an array.
* @param length
* the new length for the array.
* @return array
, if it contains exactly length
* entries; otherwise, if it contains more than
* length
entries, an array with length
* entries whose entries are the same as the first
* length
entries of array
; otherwise, an
* array with length
entries whose first
* array.length
entries are the same as those of
* array
.
*
*/
public static boolean[] setLength(final boolean[] array, final int length) {
if (length == array.length)
return array;
if (length < array.length)
return trim(array, length);
return ensureCapacity(array, length);
}
/**
* Returns a copy of a portion of an array.
*
* @param array
* an array.
* @param offset
* the first element to copy.
* @param length
* the number of elements to copy.
* @return a new array containing length
elements of
* array
starting at offset
.
*/
public static boolean[] copy(final boolean[] array, final int offset,
final int length) {
ensureOffsetLength(array, offset, length);
final boolean[] a =
length == 0 ? EMPTY_ARRAY : new boolean[length];
System.arraycopy(array, offset, a, 0, length);
return a;
}
/**
* Returns a copy of an array.
*
* @param array
* an array.
* @return a copy of array
.
*/
public static boolean[] copy(final boolean[] array) {
return array.clone();
}
/**
* Fills the given array with the given value.
*
* @param array
* an array.
* @param value
* the new value for all elements of the array.
* @deprecated Please use the corresponding {@link java.util.Arrays} method.
*/
@Deprecated
public static void fill(final boolean[] array, final boolean value) {
int i = array.length;
while (i-- != 0)
array[i] = value;
}
/**
* Fills a portion of the given array with the given value.
*
* @param array
* an array.
* @param from
* the starting index of the portion to fill (inclusive).
* @param to
* the end index of the portion to fill (exclusive).
* @param value
* the new value for all elements of the specified portion of the
* array.
* @deprecated Please use the corresponding {@link java.util.Arrays} method.
*/
@Deprecated
public static void fill(final boolean[] array, final int from, int to,
final boolean value) {
ensureFromTo(array, from, to);
if (from == 0)
while (to-- != 0)
array[to] = value;
else
for (int i = from; i < to; i++)
array[i] = value;
}
/**
* Returns true if the two arrays are elementwise equal.
*
* @param a1
* an array.
* @param a2
* another array.
* @return true if the two arrays are of the same length, and their elements
* are equal.
* @deprecated Please use the corresponding {@link java.util.Arrays} method,
* which is intrinsified in recent JVMs.
*/
@Deprecated
public static boolean equals(final boolean[] a1, final boolean a2[]) {
int i = a1.length;
if (i != a2.length)
return false;
while (i-- != 0)
if (!((a1[i]) == (a2[i])))
return false;
return true;
}
/**
* Ensures that a range given by its first (inclusive) and last (exclusive)
* elements fits an array.
*
*
* This method may be used whenever an array range check is needed.
*
* @param a
* an array.
* @param from
* a start index (inclusive).
* @param to
* an end index (exclusive).
* @throws IllegalArgumentException
* if from
is greater than to
.
* @throws ArrayIndexOutOfBoundsException
* if from
or to
are greater than the
* array length or negative.
*/
public static void ensureFromTo(final boolean[] a, final int from,
final int to) {
Arrays.ensureFromTo(a.length, from, to);
}
/**
* Ensures that a range given by an offset and a length fits an array.
*
*
* This method may be used whenever an array range check is needed.
*
* @param a
* an array.
* @param offset
* a start index.
* @param length
* a length (the number of elements in the range).
* @throws IllegalArgumentException
* if length
is negative.
* @throws ArrayIndexOutOfBoundsException
* if offset
is negative or offset
+
* length
is greater than the array length.
*/
public static void ensureOffsetLength(final boolean[] a, final int offset,
final int length) {
Arrays.ensureOffsetLength(a.length, offset, length);
}
/**
* Ensures that two arrays are of the same length.
*
* @param a
* an array.
* @param b
* another array.
* @throws IllegalArgumentException
* if the two argument arrays are not of the same length.
*/
public static void ensureSameLength(final boolean[] a, final boolean[] b) {
if (a.length != b.length)
throw new IllegalArgumentException("Array size mismatch: "
+ a.length + " != " + b.length);
}
private static final int QUICKSORT_NO_REC = 16;
private static final int PARALLEL_QUICKSORT_NO_FORK = 8192;
private static final int QUICKSORT_MEDIAN_OF_9 = 128;
private static final int MERGESORT_NO_REC = 16;
/**
* Swaps two elements of an anrray.
*
* @param x
* an array.
* @param a
* a position in {@code x}.
* @param b
* another position in {@code x}.
*/
public static void swap(final boolean x[], final int a, final int b) {
final boolean t = x[a];
x[a] = x[b];
x[b] = t;
}
/**
* Swaps two sequences of elements of an array.
*
* @param x
* an array.
* @param a
* a position in {@code x}.
* @param b
* another position in {@code x}.
* @param n
* the number of elements to exchange starting at {@code a} and
* {@code b}.
*/
public static void swap(final boolean[] x, int a, int b, final int n) {
for (int i = 0; i < n; i++, a++, b++)
swap(x, a, b);
}
private static int med3(final boolean x[], final int a, final int b,
final int c, BooleanComparator comp) {
final int ab = comp.compare(x[a], x[b]);
final int ac = comp.compare(x[a], x[c]);
final int bc = comp.compare(x[b], x[c]);
return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0
? c
: a));
}
private static void selectionSort(final boolean[] a, final int from,
final int to, final BooleanComparator comp) {
for (int i = from; i < to - 1; i++) {
int m = i;
for (int j = i + 1; j < to; j++)
if (comp.compare(a[j], a[m]) < 0)
m = j;
if (m != i) {
final boolean u = a[i];
a[i] = a[m];
a[m] = u;
}
}
}
private static void insertionSort(final boolean[] a, final int from,
final int to, final BooleanComparator comp) {
for (int i = from; ++i < to;) {
boolean t = a[i];
int j = i;
for (boolean u = a[j - 1]; comp.compare(t, u) < 0; u = a[--j - 1]) {
a[j] = u;
if (from == j - 1) {
--j;
break;
}
}
a[j] = t;
}
}
/**
* Sorts the specified range of elements according to the order induced by
* the specified comparator using quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley
* and M. Douglas McIlroy, “Engineering a Sort Function”,
* Software: Practice and Experience, 23(11), pages 1249−1265,
* 1993.
*
*
* Note that this implementation does not allocate any object, contrarily to
* the implementation used to sort primitive types in
* {@link java.util.Arrays}, which switches to mergesort on large inputs.
*
* @param x
* the array to be sorted.
* @param from
* the index of the first element (inclusive) to be sorted.
* @param to
* the index of the last element (exclusive) to be sorted.
* @param comp
* the comparator to determine the sorting order.
*
*/
public static void quickSort(final boolean[] x, final int from,
final int to, final BooleanComparator comp) {
final int len = to - from;
// Selection sort on smallest arrays
if (len < QUICKSORT_NO_REC) {
selectionSort(x, from, to, comp);
return;
}
// Choose a partition element, v
int m = from + len / 2;
int l = from;
int n = to - 1;
if (len > QUICKSORT_MEDIAN_OF_9) { // Big arrays, pseudomedian of 9
int s = len / 8;
l = med3(x, l, l + s, l + 2 * s, comp);
m = med3(x, m - s, m, m + s, comp);
n = med3(x, n - 2 * s, n - s, n, comp);
}
m = med3(x, l, m, n, comp); // Mid-size, med of 3
final boolean v = x[m];
// Establish Invariant: v* (v)* v*
int a = from, b = a, c = to - 1, d = c;
while (true) {
int comparison;
while (b <= c && (comparison = comp.compare(x[b], v)) <= 0) {
if (comparison == 0)
swap(x, a++, b);
b++;
}
while (c >= b && (comparison = comp.compare(x[c], v)) >= 0) {
if (comparison == 0)
swap(x, c, d--);
c--;
}
if (b > c)
break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int s;
s = Math.min(a - from, b - a);
swap(x, from, b - s, s);
s = Math.min(d - c, to - d - 1);
swap(x, b, to - s, s);
// Recursively sort non-partition-elements
if ((s = b - a) > 1)
quickSort(x, from, from + s, comp);
if ((s = d - c) > 1)
quickSort(x, to - s, to, comp);
}
/**
* Sorts an array according to the order induced by the specified comparator
* using quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley
* and M. Douglas McIlroy, “Engineering a Sort Function”,
* Software: Practice and Experience, 23(11), pages 1249−1265,
* 1993.
*
*
* Note that this implementation does not allocate any object, contrarily to
* the implementation used to sort primitive types in
* {@link java.util.Arrays}, which switches to mergesort on large inputs.
*
* @param x
* the array to be sorted.
* @param comp
* the comparator to determine the sorting order.
*
*/
public static void quickSort(final boolean[] x, final BooleanComparator comp) {
quickSort(x, 0, x.length, comp);
}
protected static class ForkJoinQuickSortComp extends RecursiveAction {
private static final long serialVersionUID = 1L;
private final int from;
private final int to;
private final boolean[] x;
private final BooleanComparator comp;
public ForkJoinQuickSortComp(final boolean[] x, final int from,
final int to, final BooleanComparator comp) {
this.from = from;
this.to = to;
this.x = x;
this.comp = comp;
}
@Override
protected void compute() {
final boolean[] x = this.x;
final int len = to - from;
if (len < PARALLEL_QUICKSORT_NO_FORK) {
quickSort(x, from, to, comp);
return;
}
// Choose a partition element, v
int m = from + len / 2;
int l = from;
int n = to - 1;
int s = len / 8;
l = med3(x, l, l + s, l + 2 * s, comp);
m = med3(x, m - s, m, m + s, comp);
n = med3(x, n - 2 * s, n - s, n, comp);
m = med3(x, l, m, n, comp);
final boolean v = x[m];
// Establish Invariant: v* (v)* v*
int a = from, b = a, c = to - 1, d = c;
while (true) {
int comparison;
while (b <= c && (comparison = comp.compare(x[b], v)) <= 0) {
if (comparison == 0)
swap(x, a++, b);
b++;
}
while (c >= b && (comparison = comp.compare(x[c], v)) >= 0) {
if (comparison == 0)
swap(x, c, d--);
c--;
}
if (b > c)
break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int t;
s = Math.min(a - from, b - a);
swap(x, from, b - s, s);
s = Math.min(d - c, to - d - 1);
swap(x, b, to - s, s);
// Recursively sort non-partition-elements
s = b - a;
t = d - c;
if (s > 1 && t > 1)
invokeAll(new ForkJoinQuickSortComp(x, from, from + s, comp),
new ForkJoinQuickSortComp(x, to - t, to, comp));
else if (s > 1)
invokeAll(new ForkJoinQuickSortComp(x, from, from + s, comp));
else
invokeAll(new ForkJoinQuickSortComp(x, to - t, to, comp));
}
}
/**
* Sorts the specified range of elements according to the order induced by
* the specified comparator using a parallel quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley
* and M. Douglas McIlroy, “Engineering a Sort Function”,
* Software: Practice and Experience, 23(11), pages 1249−1265,
* 1993.
*
*
* This implementation uses a {@link ForkJoinPool} executor service with
* {@link Runtime#availableProcessors()} parallel threads.
*
* @param x
* the array to be sorted.
* @param from
* the index of the first element (inclusive) to be sorted.
* @param to
* the index of the last element (exclusive) to be sorted.
* @param comp
* the comparator to determine the sorting order.
*/
public static void parallelQuickSort(final boolean[] x, final int from,
final int to, final BooleanComparator comp) {
if (to - from < PARALLEL_QUICKSORT_NO_FORK)
quickSort(x, from, to, comp);
else {
final ForkJoinPool pool = new ForkJoinPool(Runtime.getRuntime()
.availableProcessors());
pool.invoke(new ForkJoinQuickSortComp(x, from, to, comp));
pool.shutdown();
}
}
/**
* Sorts an array according to the order induced by the specified comparator
* using a parallel quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley
* and M. Douglas McIlroy, “Engineering a Sort Function”,
* Software: Practice and Experience, 23(11), pages 1249−1265,
* 1993.
*
*
* This implementation uses a {@link ForkJoinPool} executor service with
* {@link Runtime#availableProcessors()} parallel threads.
*
* @param x
* the array to be sorted.
* @param comp
* the comparator to determine the sorting order.
*/
public static void parallelQuickSort(final boolean[] x,
final BooleanComparator comp) {
parallelQuickSort(x, 0, x.length, comp);
}
private static int med3(final boolean x[], final int a, final int b,
final int c) {
final int ab = (Boolean.compare((x[a]), (x[b])));
final int ac = (Boolean.compare((x[a]), (x[c])));
final int bc = (Boolean.compare((x[b]), (x[c])));
return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0
? c
: a));
}
private static void selectionSort(final boolean[] a, final int from,
final int to) {
for (int i = from; i < to - 1; i++) {
int m = i;
for (int j = i + 1; j < to; j++)
if ((!(a[j]) && (a[m])))
m = j;
if (m != i) {
final boolean u = a[i];
a[i] = a[m];
a[m] = u;
}
}
}
private static void insertionSort(final boolean[] a, final int from,
final int to) {
for (int i = from; ++i < to;) {
boolean t = a[i];
int j = i;
for (boolean u = a[j - 1]; (!(t) && (u)); u = a[--j - 1]) {
a[j] = u;
if (from == j - 1) {
--j;
break;
}
}
a[j] = t;
}
}
/**
* Sorts the specified range of elements according to the natural ascending
* order using quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley
* and M. Douglas McIlroy, “Engineering a Sort Function”,
* Software: Practice and Experience, 23(11), pages 1249−1265,
* 1993.
*
*
* Note that this implementation does not allocate any object, contrarily to
* the implementation used to sort primitive types in
* {@link java.util.Arrays}, which switches to mergesort on large inputs.
*
* @param x
* the array to be sorted.
* @param from
* the index of the first element (inclusive) to be sorted.
* @param to
* the index of the last element (exclusive) to be sorted.
*/
public static void quickSort(final boolean[] x, final int from, final int to) {
final int len = to - from;
// Selection sort on smallest arrays
if (len < QUICKSORT_NO_REC) {
selectionSort(x, from, to);
return;
}
// Choose a partition element, v
int m = from + len / 2;
int l = from;
int n = to - 1;
if (len > QUICKSORT_MEDIAN_OF_9) { // Big arrays, pseudomedian of 9
int s = len / 8;
l = med3(x, l, l + s, l + 2 * s);
m = med3(x, m - s, m, m + s);
n = med3(x, n - 2 * s, n - s, n);
}
m = med3(x, l, m, n); // Mid-size, med of 3
final boolean v = x[m];
// Establish Invariant: v* (v)* v*
int a = from, b = a, c = to - 1, d = c;
while (true) {
int comparison;
while (b <= c && (comparison = (Boolean.compare((x[b]), (v)))) <= 0) {
if (comparison == 0)
swap(x, a++, b);
b++;
}
while (c >= b && (comparison = (Boolean.compare((x[c]), (v)))) >= 0) {
if (comparison == 0)
swap(x, c, d--);
c--;
}
if (b > c)
break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int s;
s = Math.min(a - from, b - a);
swap(x, from, b - s, s);
s = Math.min(d - c, to - d - 1);
swap(x, b, to - s, s);
// Recursively sort non-partition-elements
if ((s = b - a) > 1)
quickSort(x, from, from + s);
if ((s = d - c) > 1)
quickSort(x, to - s, to);
}
/**
* Sorts an array according to the natural ascending order using quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley
* and M. Douglas McIlroy, “Engineering a Sort Function”,
* Software: Practice and Experience, 23(11), pages 1249−1265,
* 1993.
*
*
* Note that this implementation does not allocate any object, contrarily to
* the implementation used to sort primitive types in
* {@link java.util.Arrays}, which switches to mergesort on large inputs.
*
* @param x
* the array to be sorted.
*
*/
public static void quickSort(final boolean[] x) {
quickSort(x, 0, x.length);
}
protected static class ForkJoinQuickSort extends RecursiveAction {
private static final long serialVersionUID = 1L;
private final int from;
private final int to;
private final boolean[] x;
public ForkJoinQuickSort(final boolean[] x, final int from, final int to) {
this.from = from;
this.to = to;
this.x = x;
}
@Override
protected void compute() {
final boolean[] x = this.x;
final int len = to - from;
if (len < PARALLEL_QUICKSORT_NO_FORK) {
quickSort(x, from, to);
return;
}
// Choose a partition element, v
int m = from + len / 2;
int l = from;
int n = to - 1;
int s = len / 8;
l = med3(x, l, l + s, l + 2 * s);
m = med3(x, m - s, m, m + s);
n = med3(x, n - 2 * s, n - s, n);
m = med3(x, l, m, n);
final boolean v = x[m];
// Establish Invariant: v* (v)* v*
int a = from, b = a, c = to - 1, d = c;
while (true) {
int comparison;
while (b <= c
&& (comparison = (Boolean.compare((x[b]), (v)))) <= 0) {
if (comparison == 0)
swap(x, a++, b);
b++;
}
while (c >= b
&& (comparison = (Boolean.compare((x[c]), (v)))) >= 0) {
if (comparison == 0)
swap(x, c, d--);
c--;
}
if (b > c)
break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int t;
s = Math.min(a - from, b - a);
swap(x, from, b - s, s);
s = Math.min(d - c, to - d - 1);
swap(x, b, to - s, s);
// Recursively sort non-partition-elements
s = b - a;
t = d - c;
if (s > 1 && t > 1)
invokeAll(new ForkJoinQuickSort(x, from, from + s),
new ForkJoinQuickSort(x, to - t, to));
else if (s > 1)
invokeAll(new ForkJoinQuickSort(x, from, from + s));
else
invokeAll(new ForkJoinQuickSort(x, to - t, to));
}
}
/**
* Sorts the specified range of elements according to the natural ascending
* order using a parallel quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley
* and M. Douglas McIlroy, “Engineering a Sort Function”,
* Software: Practice and Experience, 23(11), pages 1249−1265,
* 1993.
*
*
* This implementation uses a {@link ForkJoinPool} executor service with
* {@link Runtime#availableProcessors()} parallel threads.
*
* @param x
* the array to be sorted.
* @param from
* the index of the first element (inclusive) to be sorted.
* @param to
* the index of the last element (exclusive) to be sorted.
*/
public static void parallelQuickSort(final boolean[] x, final int from,
final int to) {
if (to - from < PARALLEL_QUICKSORT_NO_FORK)
quickSort(x, from, to);
else {
final ForkJoinPool pool = new ForkJoinPool(Runtime.getRuntime()
.availableProcessors());
pool.invoke(new ForkJoinQuickSort(x, from, to));
pool.shutdown();
}
}
/**
* Sorts an array according to the natural ascending order using a parallel
* quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley
* and M. Douglas McIlroy, “Engineering a Sort Function”,
* Software: Practice and Experience, 23(11), pages 1249−1265,
* 1993.
*
*
* This implementation uses a {@link ForkJoinPool} executor service with
* {@link Runtime#availableProcessors()} parallel threads.
*
* @param x
* the array to be sorted.
*
*/
public static void parallelQuickSort(final boolean[] x) {
parallelQuickSort(x, 0, x.length);
}
private static int med3Indirect(final int perm[], final boolean x[],
final int a, final int b, final int c) {
final boolean aa = x[perm[a]];
final boolean bb = x[perm[b]];
final boolean cc = x[perm[c]];
final int ab = (Boolean.compare((aa), (bb)));
final int ac = (Boolean.compare((aa), (cc)));
final int bc = (Boolean.compare((bb), (cc)));
return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0
? c
: a));
}
private static void insertionSortIndirect(final int[] perm,
final boolean[] a, final int from, final int to) {
for (int i = from; ++i < to;) {
int t = perm[i];
int j = i;
for (int u = perm[j - 1]; (!(a[t]) && (a[u])); u = perm[--j - 1]) {
perm[j] = u;
if (from == j - 1) {
--j;
break;
}
}
perm[j] = t;
}
}
/**
* Sorts the specified range of elements according to the natural ascending
* order using indirect quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley
* and M. Douglas McIlroy, “Engineering a Sort Function”,
* Software: Practice and Experience, 23(11), pages 1249−1265,
* 1993.
*
*
* This method implement an indirect sort. The elements of
* perm
(which must be exactly the numbers in the interval
* [0..perm.length)
) will be permuted so that
* x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ]
.
*
*
* Note that this implementation does not allocate any object, contrarily to
* the implementation used to sort primitive types in
* {@link java.util.Arrays}, which switches to mergesort on large inputs.
*
* @param perm
* a permutation array indexing {@code x}.
* @param x
* the array to be sorted.
* @param from
* the index of the first element (inclusive) to be sorted.
* @param to
* the index of the last element (exclusive) to be sorted.
*/
public static void quickSortIndirect(final int[] perm, final boolean[] x,
final int from, final int to) {
final int len = to - from;
// Selection sort on smallest arrays
if (len < QUICKSORT_NO_REC) {
insertionSortIndirect(perm, x, from, to);
return;
}
// Choose a partition element, v
int m = from + len / 2;
int l = from;
int n = to - 1;
if (len > QUICKSORT_MEDIAN_OF_9) { // Big arrays, pseudomedian of 9
int s = len / 8;
l = med3Indirect(perm, x, l, l + s, l + 2 * s);
m = med3Indirect(perm, x, m - s, m, m + s);
n = med3Indirect(perm, x, n - 2 * s, n - s, n);
}
m = med3Indirect(perm, x, l, m, n); // Mid-size, med of 3
final boolean v = x[perm[m]];
// Establish Invariant: v* (v)* v*
int a = from, b = a, c = to - 1, d = c;
while (true) {
int comparison;
while (b <= c
&& (comparison = (Boolean.compare((x[perm[b]]), (v)))) <= 0) {
if (comparison == 0)
IntArrays.swap(perm, a++, b);
b++;
}
while (c >= b
&& (comparison = (Boolean.compare((x[perm[c]]), (v)))) >= 0) {
if (comparison == 0)
IntArrays.swap(perm, c, d--);
c--;
}
if (b > c)
break;
IntArrays.swap(perm, b++, c--);
}
// Swap partition elements back to middle
int s;
s = Math.min(a - from, b - a);
IntArrays.swap(perm, from, b - s, s);
s = Math.min(d - c, to - d - 1);
IntArrays.swap(perm, b, to - s, s);
// Recursively sort non-partition-elements
if ((s = b - a) > 1)
quickSortIndirect(perm, x, from, from + s);
if ((s = d - c) > 1)
quickSortIndirect(perm, x, to - s, to);
}
/**
* Sorts an array according to the natural ascending order using indirect
* quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley
* and M. Douglas McIlroy, “Engineering a Sort Function”,
* Software: Practice and Experience, 23(11), pages 1249−1265,
* 1993.
*
*
* This method implement an indirect sort. The elements of
* perm
(which must be exactly the numbers in the interval
* [0..perm.length)
) will be permuted so that
* x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ]
.
*
*
* Note that this implementation does not allocate any object, contrarily to
* the implementation used to sort primitive types in
* {@link java.util.Arrays}, which switches to mergesort on large inputs.
*
* @param perm
* a permutation array indexing {@code x}.
* @param x
* the array to be sorted.
*/
public static void quickSortIndirect(final int perm[], final boolean[] x) {
quickSortIndirect(perm, x, 0, x.length);
}
protected static class ForkJoinQuickSortIndirect extends RecursiveAction {
private static final long serialVersionUID = 1L;
private final int from;
private final int to;
private final int[] perm;
private final boolean[] x;
public ForkJoinQuickSortIndirect(final int perm[], final boolean[] x,
final int from, final int to) {
this.from = from;
this.to = to;
this.x = x;
this.perm = perm;
}
@Override
protected void compute() {
final boolean[] x = this.x;
final int len = to - from;
if (len < PARALLEL_QUICKSORT_NO_FORK) {
quickSortIndirect(perm, x, from, to);
return;
}
// Choose a partition element, v
int m = from + len / 2;
int l = from;
int n = to - 1;
int s = len / 8;
l = med3Indirect(perm, x, l, l + s, l + 2 * s);
m = med3Indirect(perm, x, m - s, m, m + s);
n = med3Indirect(perm, x, n - 2 * s, n - s, n);
m = med3Indirect(perm, x, l, m, n);
final boolean v = x[perm[m]];
// Establish Invariant: v* (v)* v*
int a = from, b = a, c = to - 1, d = c;
while (true) {
int comparison;
while (b <= c
&& (comparison = (Boolean.compare((x[perm[b]]), (v)))) <= 0) {
if (comparison == 0)
IntArrays.swap(perm, a++, b);
b++;
}
while (c >= b
&& (comparison = (Boolean.compare((x[perm[c]]), (v)))) >= 0) {
if (comparison == 0)
IntArrays.swap(perm, c, d--);
c--;
}
if (b > c)
break;
IntArrays.swap(perm, b++, c--);
}
// Swap partition elements back to middle
int t;
s = Math.min(a - from, b - a);
IntArrays.swap(perm, from, b - s, s);
s = Math.min(d - c, to - d - 1);
IntArrays.swap(perm, b, to - s, s);
// Recursively sort non-partition-elements
s = b - a;
t = d - c;
if (s > 1 && t > 1)
invokeAll(
new ForkJoinQuickSortIndirect(perm, x, from, from + s),
new ForkJoinQuickSortIndirect(perm, x, to - t, to));
else if (s > 1)
invokeAll(new ForkJoinQuickSortIndirect(perm, x, from, from + s));
else
invokeAll(new ForkJoinQuickSortIndirect(perm, x, to - t, to));
}
}
/**
* Sorts the specified range of elements according to the natural ascending
* order using a parallel indirect quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley
* and M. Douglas McIlroy, “Engineering a Sort Function”,
* Software: Practice and Experience, 23(11), pages 1249−1265,
* 1993.
*
*
* This method implement an indirect sort. The elements of
* perm
(which must be exactly the numbers in the interval
* [0..perm.length)
) will be permuted so that
* x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ]
.
*
*
* This implementation uses a {@link ForkJoinPool} executor service with
* {@link Runtime#availableProcessors()} parallel threads.
*
* @param perm
* a permutation array indexing {@code x}.
* @param x
* the array to be sorted.
* @param from
* the index of the first element (inclusive) to be sorted.
* @param to
* the index of the last element (exclusive) to be sorted.
*/
public static void parallelQuickSortIndirect(final int[] perm,
final boolean[] x, final int from, final int to) {
if (to - from < PARALLEL_QUICKSORT_NO_FORK)
quickSortIndirect(perm, x, from, to);
else {
final ForkJoinPool pool = new ForkJoinPool(Runtime.getRuntime()
.availableProcessors());
pool.invoke(new ForkJoinQuickSortIndirect(perm, x, from, to));
pool.shutdown();
}
}
/**
* Sorts an array according to the natural ascending order using a parallel
* indirect quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley
* and M. Douglas McIlroy, “Engineering a Sort Function”,
* Software: Practice and Experience, 23(11), pages 1249−1265,
* 1993.
*
*
* This method implement an indirect sort. The elements of
* perm
(which must be exactly the numbers in the interval
* [0..perm.length)
) will be permuted so that
* x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ]
.
*
*
* This implementation uses a {@link ForkJoinPool} executor service with
* {@link Runtime#availableProcessors()} parallel threads.
*
* @param perm
* a permutation array indexing {@code x}.
* @param x
* the array to be sorted.
*
*/
public static void parallelQuickSortIndirect(final int perm[],
final boolean[] x) {
parallelQuickSortIndirect(perm, x, 0, x.length);
}
/**
* Stabilizes a permutation.
*
*
* This method can be used to stabilize the permutation generated by an
* indirect sorting, assuming that initially the permutation array was in
* ascending order (e.g., the identity, as usually happens). This method
* scans the permutation, and for each non-singleton block of elements with
* the same associated values in {@code x}, permutes them in ascending order.
* The resulting permutation corresponds to a stable sort.
*
*
* Usually combining an unstable indirect sort and this method is more
* efficient than using a stable sort, as most stable sort algorithms
* require a support array.
*
*
* More precisely, assuming that
* x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ]
, after stabilization
* we will also have that x[ perm[ i ] ] = x[ perm[ i + 1 ] ]
* implies perm[ i ] ≤ perm[ i + 1 ]
.
*
* @param perm
* a permutation array indexing {@code x} so that it is sorted.
* @param x
* the sorted array to be stabilized.
* @param from
* the index of the first element (inclusive) to be stabilized.
* @param to
* the index of the last element (exclusive) to be stabilized.
*/
public static void stabilize(final int perm[], final boolean[] x,
final int from, final int to) {
int curr = from;
for (int i = from + 1; i < to; i++) {
if (x[perm[i]] != x[perm[curr]]) {
if (i - curr > 1)
IntArrays.parallelQuickSort(perm, curr, i);
curr = i;
}
}
if (to - curr > 1)
IntArrays.parallelQuickSort(perm, curr, to);
}
/**
* Stabilizes a permutation.
*
*
* This method can be used to stabilize the permutation generated by an
* indirect sorting, assuming that initially the permutation array was in
* ascending order (e.g., the identity, as usually happens). This method
* scans the permutation, and for each non-singleton block of elements with
* the same associated values in {@code x}, permutes them in ascending order.
* The resulting permutation corresponds to a stable sort.
*
*
* Usually combining an unstable indirect sort and this method is more
* efficient than using a stable sort, as most stable sort algorithms
* require a support array.
*
*
* More precisely, assuming that
* x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ]
, after stabilization
* we will also have that x[ perm[ i ] ] = x[ perm[ i + 1 ] ]
* implies perm[ i ] ≤ perm[ i + 1 ]
.
*
* @param perm
* a permutation array indexing {@code x} so that it is sorted.
* @param x
* the sorted array to be stabilized.
*/
public static void stabilize(final int perm[], final boolean[] x) {
stabilize(perm, x, 0, perm.length);
}
private static int med3(final boolean x[], final boolean[] y, final int a,
final int b, final int c) {
int t;
final int ab = (t = (Boolean.compare((x[a]), (x[b])))) == 0 ? (Boolean
.compare((y[a]), (y[b]))) : t;
final int ac = (t = (Boolean.compare((x[a]), (x[c])))) == 0 ? (Boolean
.compare((y[a]), (y[c]))) : t;
final int bc = (t = (Boolean.compare((x[b]), (x[c])))) == 0 ? (Boolean
.compare((y[b]), (y[c]))) : t;
return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0
? c
: a));
}
private static void swap(final boolean x[], final boolean[] y, final int a,
final int b) {
final boolean t = x[a];
final boolean u = y[a];
x[a] = x[b];
y[a] = y[b];
x[b] = t;
y[b] = u;
}
private static void swap(final boolean[] x, final boolean[] y, int a,
int b, final int n) {
for (int i = 0; i < n; i++, a++, b++)
swap(x, y, a, b);
}
private static void selectionSort(final boolean[] a, final boolean[] b,
final int from, final int to) {
for (int i = from; i < to - 1; i++) {
int m = i, u;
for (int j = i + 1; j < to; j++)
if ((u = (Boolean.compare((a[j]), (a[m])))) < 0 || u == 0
&& (!(b[j]) && (b[m])))
m = j;
if (m != i) {
boolean t = a[i];
a[i] = a[m];
a[m] = t;
t = b[i];
b[i] = b[m];
b[m] = t;
}
}
}
/**
* Sorts the specified range of elements of two arrays according to the
* natural lexicographical ascending order using quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley
* and M. Douglas McIlroy, “Engineering a Sort Function”,
* Software: Practice and Experience, 23(11), pages 1249−1265,
* 1993.
*
*
* This method implements a lexicographical sorting of the
* arguments. Pairs of elements in the same position in the two provided
* arrays will be considered a single key, and permuted accordingly. In the
* end, either x[ i ] < x[ i + 1 ]
or x[ i ]
* == x[ i + 1 ]
and y[ i ] ≤ y[ i + 1 ]
.
*
* @param x
* the first array to be sorted.
* @param y
* the second array to be sorted.
* @param from
* the index of the first element (inclusive) to be sorted.
* @param to
* the index of the last element (exclusive) to be sorted.
*/
public static void quickSort(final boolean[] x, final boolean[] y,
final int from, final int to) {
final int len = to - from;
if (len < QUICKSORT_NO_REC) {
selectionSort(x, y, from, to);
return;
}
// Choose a partition element, v
int m = from + len / 2;
int l = from;
int n = to - 1;
if (len > QUICKSORT_MEDIAN_OF_9) { // Big arrays, pseudomedian of 9
int s = len / 8;
l = med3(x, y, l, l + s, l + 2 * s);
m = med3(x, y, m - s, m, m + s);
n = med3(x, y, n - 2 * s, n - s, n);
}
m = med3(x, y, l, m, n); // Mid-size, med of 3
final boolean v = x[m], w = y[m];
// Establish Invariant: v* (v)* v*
int a = from, b = a, c = to - 1, d = c;
while (true) {
int comparison, t;
while (b <= c
&& (comparison = (t = (Boolean.compare((x[b]), (v)))) == 0
? (Boolean.compare((y[b]), (w)))
: t) <= 0) {
if (comparison == 0)
swap(x, y, a++, b);
b++;
}
while (c >= b
&& (comparison = (t = (Boolean.compare((x[c]), (v)))) == 0
? (Boolean.compare((y[c]), (w)))
: t) >= 0) {
if (comparison == 0)
swap(x, y, c, d--);
c--;
}
if (b > c)
break;
swap(x, y, b++, c--);
}
// Swap partition elements back to middle
int s;
s = Math.min(a - from, b - a);
swap(x, y, from, b - s, s);
s = Math.min(d - c, to - d - 1);
swap(x, y, b, to - s, s);
// Recursively sort non-partition-elements
if ((s = b - a) > 1)
quickSort(x, y, from, from + s);
if ((s = d - c) > 1)
quickSort(x, y, to - s, to);
}
/**
* Sorts two arrays according to the natural lexicographical ascending order
* using quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley
* and M. Douglas McIlroy, “Engineering a Sort Function”,
* Software: Practice and Experience, 23(11), pages 1249−1265,
* 1993.
*
*
* This method implements a lexicographical sorting of the
* arguments. Pairs of elements in the same position in the two provided
* arrays will be considered a single key, and permuted accordingly. In the
* end, either x[ i ] < x[ i + 1 ]
or x[ i ]
* == x[ i + 1 ]
and y[ i ] ≤ y[ i + 1 ]
.
*
* @param x
* the first array to be sorted.
* @param y
* the second array to be sorted.
*/
public static void quickSort(final boolean[] x, final boolean[] y) {
ensureSameLength(x, y);
quickSort(x, y, 0, x.length);
}
protected static class ForkJoinQuickSort2 extends RecursiveAction {
private static final long serialVersionUID = 1L;
private final int from;
private final int to;
private final boolean[] x, y;
public ForkJoinQuickSort2(final boolean[] x, final boolean[] y,
final int from, final int to) {
this.from = from;
this.to = to;
this.x = x;
this.y = y;
}
@Override
protected void compute() {
final boolean[] x = this.x;
final boolean[] y = this.y;
final int len = to - from;
if (len < PARALLEL_QUICKSORT_NO_FORK) {
quickSort(x, y, from, to);
return;
}
// Choose a partition element, v
int m = from + len / 2;
int l = from;
int n = to - 1;
int s = len / 8;
l = med3(x, y, l, l + s, l + 2 * s);
m = med3(x, y, m - s, m, m + s);
n = med3(x, y, n - 2 * s, n - s, n);
m = med3(x, y, l, m, n);
final boolean v = x[m], w = y[m];
// Establish Invariant: v* (v)* v*
int a = from, b = a, c = to - 1, d = c;
while (true) {
int comparison, t;
while (b <= c
&& (comparison = (t = (Boolean.compare((x[b]), (v)))) == 0
? (Boolean.compare((y[b]), (w)))
: t) <= 0) {
if (comparison == 0)
swap(x, y, a++, b);
b++;
}
while (c >= b
&& (comparison = (t = (Boolean.compare((x[c]), (v)))) == 0
? (Boolean.compare((y[c]), (w)))
: t) >= 0) {
if (comparison == 0)
swap(x, y, c, d--);
c--;
}
if (b > c)
break;
swap(x, y, b++, c--);
}
// Swap partition elements back to middle
int t;
s = Math.min(a - from, b - a);
swap(x, y, from, b - s, s);
s = Math.min(d - c, to - d - 1);
swap(x, y, b, to - s, s);
s = b - a;
t = d - c;
// Recursively sort non-partition-elements
if (s > 1 && t > 1)
invokeAll(new ForkJoinQuickSort2(x, y, from, from + s),
new ForkJoinQuickSort2(x, y, to - t, to));
else if (s > 1)
invokeAll(new ForkJoinQuickSort2(x, y, from, from + s));
else
invokeAll(new ForkJoinQuickSort2(x, y, to - t, to));
}
}
/**
* Sorts the specified range of elements of two arrays according to the
* natural lexicographical ascending order using a parallel quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley
* and M. Douglas McIlroy, “Engineering a Sort Function”,
* Software: Practice and Experience, 23(11), pages 1249−1265,
* 1993.
*
*
* This method implements a lexicographical sorting of the
* arguments. Pairs of elements in the same position in the two provided
* arrays will be considered a single key, and permuted accordingly. In the
* end, either x[ i ] < x[ i + 1 ]
or x[ i ]
* == x[ i + 1 ]
and y[ i ] ≤ y[ i + 1 ]
.
*
*
* This implementation uses a {@link ForkJoinPool} executor service with
* {@link Runtime#availableProcessors()} parallel threads.
*
* @param x
* the first array to be sorted.
* @param y
* the second array to be sorted.
* @param from
* the index of the first element (inclusive) to be sorted.
* @param to
* the index of the last element (exclusive) to be sorted.
*/
public static void parallelQuickSort(final boolean[] x, final boolean[] y,
final int from, final int to) {
if (to - from < PARALLEL_QUICKSORT_NO_FORK)
quickSort(x, y, from, to);
final ForkJoinPool pool = new ForkJoinPool(Runtime.getRuntime()
.availableProcessors());
pool.invoke(new ForkJoinQuickSort2(x, y, from, to));
pool.shutdown();
}
/**
* Sorts two arrays according to the natural lexicographical ascending order
* using a parallel quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley
* and M. Douglas McIlroy, “Engineering a Sort Function”,
* Software: Practice and Experience, 23(11), pages 1249−1265,
* 1993.
*
*
* This method implements a lexicographical sorting of the
* arguments. Pairs of elements in the same position in the two provided
* arrays will be considered a single key, and permuted accordingly. In the
* end, either x[ i ] < x[ i + 1 ]
or x[ i ]
* == x[ i + 1 ]
and y[ i ] ≤ y[ i + 1 ]
.
*
*
* This implementation uses a {@link ForkJoinPool} executor service with
* {@link Runtime#availableProcessors()} parallel threads.
*
* @param x
* the first array to be sorted.
* @param y
* the second array to be sorted.
*/
public static void parallelQuickSort(final boolean[] x, final boolean[] y) {
ensureSameLength(x, y);
parallelQuickSort(x, y, 0, x.length);
}
/**
* Sorts the specified range of elements according to the natural ascending
* order using mergesort, using a given pre-filled support array.
*
*
* This sort is guaranteed to be stable: equal elements will not be
* reordered as a result of the sort. Moreover, no support arrays will be
* allocated.
*
* @param a
* the array to be sorted.
* @param from
* the index of the first element (inclusive) to be sorted.
* @param to
* the index of the last element (exclusive) to be sorted.
* @param supp
* a support array containing at least to
elements,
* and whose entries are identical to those of {@code a} in the
* specified range.
*/
public static void mergeSort(final boolean a[], final int from,
final int to, final boolean supp[]) {
int len = to - from;
// Insertion sort on smallest arrays
if (len < MERGESORT_NO_REC) {
insertionSort(a, from, to);
return;
}
// Recursively sort halves of a into supp
final int mid = (from + to) >>> 1;
mergeSort(supp, from, mid, a);
mergeSort(supp, mid, to, a);
// If list is already sorted, just copy from supp to a. This is an
// optimization that results in faster sorts for nearly ordered lists.
if ((!(supp[mid - 1]) || (supp[mid]))) {
System.arraycopy(supp, from, a, from, len);
return;
}
// Merge sorted halves (now in supp) into a
for (int i = from, p = from, q = mid; i < to; i++) {
if (q >= to || p < mid && (!(supp[p]) || (supp[q])))
a[i] = supp[p++];
else
a[i] = supp[q++];
}
}
/**
* Sorts the specified range of elements according to the natural ascending
* order using mergesort.
*
*
* This sort is guaranteed to be stable: equal elements will not be
* reordered as a result of the sort. An array as large as a
* will be allocated by this method.
*
* @param a
* the array to be sorted.
* @param from
* the index of the first element (inclusive) to be sorted.
* @param to
* the index of the last element (exclusive) to be sorted.
*/
public static void mergeSort(final boolean a[], final int from, final int to) {
mergeSort(a, from, to, a.clone());
}
/**
* Sorts an array according to the natural ascending order using mergesort.
*
*
* This sort is guaranteed to be stable: equal elements will not be
* reordered as a result of the sort. An array as large as a
* will be allocated by this method.
*
* @param a
* the array to be sorted.
*/
public static void mergeSort(final boolean a[]) {
mergeSort(a, 0, a.length);
}
/**
* Sorts the specified range of elements according to the order induced by
* the specified comparator using mergesort, using a given pre-filled
* support array.
*
*
* This sort is guaranteed to be stable: equal elements will not be
* reordered as a result of the sort. Moreover, no support arrays will be
* allocated.
*
* @param a
* the array to be sorted.
* @param from
* the index of the first element (inclusive) to be sorted.
* @param to
* the index of the last element (exclusive) to be sorted.
* @param comp
* the comparator to determine the sorting order.
* @param supp
* a support array containing at least to
elements,
* and whose entries are identical to those of {@code a} in the
* specified range.
*/
public static void mergeSort(final boolean a[], final int from,
final int to, BooleanComparator comp, final boolean supp[]) {
int len = to - from;
// Insertion sort on smallest arrays
if (len < MERGESORT_NO_REC) {
insertionSort(a, from, to, comp);
return;
}
// Recursively sort halves of a into supp
final int mid = (from + to) >>> 1;
mergeSort(supp, from, mid, comp, a);
mergeSort(supp, mid, to, comp, a);
// If list is already sorted, just copy from supp to a. This is an
// optimization that results in faster sorts for nearly ordered lists.
if (comp.compare(supp[mid - 1], supp[mid]) <= 0) {
System.arraycopy(supp, from, a, from, len);
return;
}
// Merge sorted halves (now in supp) into a
for (int i = from, p = from, q = mid; i < to; i++) {
if (q >= to || p < mid && comp.compare(supp[p], supp[q]) <= 0)
a[i] = supp[p++];
else
a[i] = supp[q++];
}
}
/**
* Sorts the specified range of elements according to the order induced by
* the specified comparator using mergesort.
*
*
* This sort is guaranteed to be stable: equal elements will not be
* reordered as a result of the sort. An array as large as a
* will be allocated by this method.
*
* @param a
* the array to be sorted.
* @param from
* the index of the first element (inclusive) to be sorted.
* @param to
* the index of the last element (exclusive) to be sorted.
* @param comp
* the comparator to determine the sorting order.
*/
public static void mergeSort(final boolean a[], final int from,
final int to, BooleanComparator comp) {
mergeSort(a, from, to, comp, a.clone());
}
/**
* Sorts an array according to the order induced by the specified comparator
* using mergesort.
*
*
* This sort is guaranteed to be stable: equal elements will not be
* reordered as a result of the sort. An array as large as a
* will be allocated by this method.
*
* @param a
* the array to be sorted.
* @param comp
* the comparator to determine the sorting order.
*/
public static void mergeSort(final boolean a[], BooleanComparator comp) {
mergeSort(a, 0, a.length, comp);
}
/**
* Shuffles the specified array fragment using the specified pseudorandom
* number generator.
*
* @param a
* the array to be shuffled.
* @param from
* the index of the first element (inclusive) to be shuffled.
* @param to
* the index of the last element (exclusive) to be shuffled.
* @param random
* a pseudorandom number generator (please use a XorShift* generator).
* @return a
.
*/
public static boolean[] shuffle(final boolean[] a, final int from,
final int to, final Random random) {
for (int i = to - from; i-- != 0;) {
final int p = random.nextInt(i + 1);
final boolean t = a[from + i];
a[from + i] = a[from + p];
a[from + p] = t;
}
return a;
}
/**
* Shuffles the specified array using the specified pseudorandom number
* generator.
*
* @param a
* the array to be shuffled.
* @param random
* a pseudorandom number generator (please use a XorShift* generator).
* @return a
.
*/
public static boolean[] shuffle(final boolean[] a, final Random random) {
for (int i = a.length; i-- != 0;) {
final int p = random.nextInt(i + 1);
final boolean t = a[i];
a[i] = a[p];
a[p] = t;
}
return a;
}
/**
* Reverses the order of the elements in the specified array.
*
* @param a
* the array to be reversed.
* @return a
.
*/
public static boolean[] reverse(final boolean[] a) {
final int length = a.length;
for (int i = length / 2; i-- != 0;) {
final boolean t = a[length - i - 1];
a[length - i - 1] = a[i];
a[i] = t;
}
return a;
}
/**
* Reverses the order of the elements in the specified array fragment.
*
* @param a
* the array to be reversed.
* @param from
* the index of the first element (inclusive) to be reversed.
* @param to
* the index of the last element (exclusive) to be reversed.
* @return a
.
*/
public static boolean[] reverse(final boolean[] a, final int from,
final int to) {
final int length = to - from;
for (int i = length / 2; i-- != 0;) {
final boolean t = a[from + length - i - 1];
a[from + length - i - 1] = a[from + i];
a[from + i] = t;
}
return a;
}
/** A type-specific content-based hash strategy for arrays. */
private static final class ArrayHashStrategy
implements
Hash.Strategy,
java.io.Serializable {
private static final long serialVersionUID = -7046029254386353129L;
public int hashCode(final boolean[] o) {
return java.util.Arrays.hashCode(o);
}
public boolean equals(final boolean[] a, final boolean[] b) {
return java.util.Arrays.equals(a, b);
}
}
/**
* A type-specific content-based hash strategy for arrays.
*
*
* This hash strategy may be used in custom hash collections whenever keys
* are arrays, and they must be considered equal by content. This strategy
* will handle null
correctly, and it is serializable.
*/
public final static Hash.Strategy HASH_STRATEGY = new ArrayHashStrategy();
}