com.alibaba.fastjson.util.RyuFloat Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of fastjson-to-easyjson Show documentation
Show all versions of fastjson-to-easyjson Show documentation
Adapter alibaba fastjson to other json libraries. the fastjson version: 1.2.58
/*
* Copyright 2019 the original author or authors.
*
* Licensed under the Apache, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.gnu.org/licenses/lgpl-3.0.html
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.alibaba.fastjson.util;
/**
* An implementation of Ryu for float.
*/
public final class RyuFloat {
private static final int[][] POW5_SPLIT = {
{536870912, 0},
{671088640, 0},
{838860800, 0},
{1048576000, 0},
{655360000, 0},
{819200000, 0},
{1024000000, 0},
{640000000, 0},
{800000000, 0},
{1000000000, 0},
{625000000, 0},
{781250000, 0},
{976562500, 0},
{610351562, 1073741824},
{762939453, 268435456},
{953674316, 872415232},
{596046447, 1619001344},
{745058059, 1486880768},
{931322574, 1321730048},
{582076609, 289210368},
{727595761, 898383872},
{909494701, 1659850752},
{568434188, 1305842176},
{710542735, 1632302720},
{888178419, 1503507488},
{555111512, 671256724},
{693889390, 839070905},
{867361737, 2122580455},
{542101086, 521306416},
{677626357, 1725374844},
{847032947, 546105819},
{1058791184, 145761362},
{661744490, 91100851},
{827180612, 1187617888},
{1033975765, 1484522360},
{646234853, 1196261931},
{807793566, 2032198326},
{1009741958, 1466506084},
{631088724, 379695390},
{788860905, 474619238},
{986076131, 1130144959},
{616297582, 437905143},
{770371977, 1621123253},
{962964972, 415791331},
{601853107, 1333611405},
{752316384, 1130143345},
{940395480, 1412679181},
};
private static final int[][] POW5_INV_SPLIT = {
{268435456, 1},
{214748364, 1717986919},
{171798691, 1803886265},
{137438953, 1013612282},
{219902325, 1192282922},
{175921860, 953826338},
{140737488, 763061070},
{225179981, 791400982},
{180143985, 203624056},
{144115188, 162899245},
{230584300, 1978625710},
{184467440, 1582900568},
{147573952, 1266320455},
{236118324, 308125809},
{188894659, 675997377},
{151115727, 970294631},
{241785163, 1981968139},
{193428131, 297084323},
{154742504, 1955654377},
{247588007, 1840556814},
{198070406, 613451992},
{158456325, 61264864},
{253530120, 98023782},
{202824096, 78419026},
{162259276, 1780722139},
{259614842, 1990161963},
{207691874, 733136111},
{166153499, 1016005619},
{265845599, 337118801},
{212676479, 699191770},
{170141183, 988850146},
};
public static String toString(float value) {
char[] result = new char[15];
int len = toString(value, result, 0);
return new String(result, 0, len);
}
public static int toString(float value, char[] result, int off) {
final int FLOAT_MANTISSA_MASK = 8388607; // (1 << 23) - 1;
final int FLOAT_EXPONENT_MASK = 255; // (1 << 8) - 1;
final int FLOAT_EXPONENT_BIAS = 127; // (1 << (8 - 1)) - 1;
final long LOG10_2_NUMERATOR = 3010299; // (long) (10000000L * Math.log10(2));
final long LOG10_5_DENOMINATOR = 10000000L;
final long LOG10_5_NUMERATOR = 6989700L; // (long) (LOG10_5_DENOMINATOR * Math.log10(5));
// Step 1: Decode the floating point number, and unify normalized and subnormal cases.
// First, handle all the trivial cases.
int index = off;
if (Float.isNaN(value)) {
result[index++] = 'N';
result[index++] = 'a';
result[index++] = 'N';
return index - off;
}
if (value == Float.POSITIVE_INFINITY) {
result[index++] = 'I';
result[index++] = 'n';
result[index++] = 'f';
result[index++] = 'i';
result[index++] = 'n';
result[index++] = 'i';
result[index++] = 't';
result[index++] = 'y';
return index - off;
}
if (value == Float.NEGATIVE_INFINITY) {
result[index++] = '-';
result[index++] = 'I';
result[index++] = 'n';
result[index++] = 'f';
result[index++] = 'i';
result[index++] = 'n';
result[index++] = 'i';
result[index++] = 't';
result[index++] = 'y';
return index - off;
}
int bits = Float.floatToIntBits(value);
if (bits == 0) {
result[index++] = '0';
result[index++] = '.';
result[index++] = '0';
return index - off;
}
if (bits == 0x80000000) {
result[index++] = '-';
result[index++] = '0';
result[index++] = '.';
result[index++] = '0';
return index - off;
}
// Otherwise extract the mantissa and exponent bits and run the full algorithm.
int ieeeExponent = (bits >> 23) & FLOAT_EXPONENT_MASK;
int ieeeMantissa = bits & FLOAT_MANTISSA_MASK;
// By default, the correct mantissa starts with a 1, except for denormal numbers.
int e2;
int m2;
if (ieeeExponent == 0) {
e2 = 1 - FLOAT_EXPONENT_BIAS - 23;
m2 = ieeeMantissa;
} else {
e2 = ieeeExponent - FLOAT_EXPONENT_BIAS - 23;
m2 = ieeeMantissa | (1 << 23);
}
boolean sign = bits < 0;
// Step 2: Determine the interval of legal decimal representations.
boolean even = (m2 & 1) == 0;
int mv = 4 * m2;
int mp = 4 * m2 + 2;
int mm = 4 * m2 - ((m2 != (1L << 23)) || (ieeeExponent <= 1) ? 2 : 1);
e2 -= 2;
// Step 3: Convert to a decimal power base using 128-bit arithmetic.
// -151 = 1 - 127 - 23 - 2 <= e_2 - 2 <= 254 - 127 - 23 - 2 = 102
int dp, dv, dm;
int e10;
boolean dpIsTrailingZeros, dvIsTrailingZeros, dmIsTrailingZeros;
int lastRemovedDigit = 0;
if (e2 >= 0) {
// Compute m * 2^e_2 / 10^q = m * 2^(e_2 - q) / 5^q
int q = (int) (e2 * LOG10_2_NUMERATOR / 10000000L);
int k = 59 + (q == 0 ? 1 : (int) ((q * 23219280L + 10000000L - 1) / 10000000L)) - 1;
int i = -e2 + q + k;
long pis0 = (long) POW5_INV_SPLIT[q][0];
long pis1 = (long) POW5_INV_SPLIT[q][1];
dv = (int) ((mv * pis0 + ((mv * pis1) >> 31)) >> (i - 31));
dp = (int) ((mp * pis0 + ((mp * pis1) >> 31)) >> (i - 31));
dm = (int) ((mm * pis0 + ((mm * pis1) >> 31)) >> (i - 31));
if (q != 0 && ((dp - 1) / 10 <= dm / 10)) {
// We need to know one removed digit even if we are not going to loop below. We could use
// q = X - 1 above, except that would require 33 bits for the result, and we've found that
// 32-bit arithmetic is faster even on 64-bit machines.
int e = q - 1;
int l = 59 + (e == 0 ? 1 : (int) ((e * 23219280L + 10000000L - 1) / 10000000L)) - 1;
int qx = q - 1, ii = -e2 + q - 1 + l;
long mulPow5InvDivPow2 = (mv * (long) POW5_INV_SPLIT[qx][0] + ((mv * (long) POW5_INV_SPLIT[qx][1]) >> 31)) >> (ii - 31);
lastRemovedDigit = (int) (mulPow5InvDivPow2 % 10);
}
e10 = q;
int pow5Factor_mp = 0;
{
int v = mp;
while (v > 0) {
if (v % 5 != 0) {
break;
}
v /= 5;
pow5Factor_mp++;
}
}
int pow5Factor_mv = 0;
{
int v = mv;
while (v > 0) {
if (v % 5 != 0) {
break;
}
v /= 5;
pow5Factor_mv++;
}
}
int pow5Factor_mm = 0;
{
int v = mm;
while (v > 0) {
if (v % 5 != 0) {
break;
}
v /= 5;
pow5Factor_mm++;
}
}
dpIsTrailingZeros = pow5Factor_mp >= q;
dvIsTrailingZeros = pow5Factor_mv >= q;
dmIsTrailingZeros = pow5Factor_mm >= q;
} else {
// Compute m * 5^(-e_2) / 10^q = m * 5^(-e_2 - q) / 2^q
int q = (int) (-e2 * LOG10_5_NUMERATOR / LOG10_5_DENOMINATOR);
int i = -e2 - q;
int k = (i == 0 ? 1 : (int) ((i * 23219280L + 10000000L - 1) / 10000000L)) - 61;
int j = q - k;
long ps0 = POW5_SPLIT[i][0];
long ps1 = POW5_SPLIT[i][1];
int j31 = j - 31;
dv = (int) ((mv * ps0 + ((mv * ps1) >> 31)) >> j31);
dp = (int) ((mp * ps0 + ((mp * ps1) >> 31)) >> j31);
dm = (int) ((mm * ps0 + ((mm * ps1) >> 31)) >> j31);
if (q != 0 && ((dp - 1) / 10 <= dm / 10)) {
int e = i + 1;
j = q - 1 - ((e == 0 ? 1 : (int) ((e * 23219280L + 10000000L - 1) / 10000000L)) - 61);
int ix = i + 1;
long mulPow5divPow2 = (mv * (long) POW5_SPLIT[ix][0] + ((mv * (long) POW5_SPLIT[ix][1]) >> 31)) >> (j - 31);
lastRemovedDigit = (int) (mulPow5divPow2 % 10);
}
e10 = q + e2; // Note: e2 and e10 are both negative here.
dpIsTrailingZeros = 1 >= q;
dvIsTrailingZeros = (q < 23) && (mv & ((1 << (q - 1)) - 1)) == 0;
dmIsTrailingZeros = (mm % 2 == 1 ? 0 : 1) >= q;
}
// Step 4: Find the shortest decimal representation in the interval of legal representations.
//
// We do some extra work here in order to follow Float/Double.toString semantics. In particular,
// that requires printing in scientific format if and only if the exponent is between -3 and 7,
// and it requires printing at least two decimal digits.
//
// Above, we moved the decimal dot all the way to the right, so now we need to count digits to
// figure out the correct exponent for scientific notation.
int dplength = 10;
int factor = 1000000000;
for (; dplength > 0; dplength--) {
if (dp >= factor) {
break;
}
factor /= 10;
}
int exp = e10 + dplength - 1;
// Float.toString semantics requires using scientific notation if and only if outside this range.
boolean scientificNotation = !((exp >= -3) && (exp < 7));
int removed = 0;
if (dpIsTrailingZeros && !even) {
dp--;
}
while (dp / 10 > dm / 10) {
if ((dp < 100) && scientificNotation) {
// We print at least two digits, so we might as well stop now.
break;
}
dmIsTrailingZeros &= dm % 10 == 0;
dp /= 10;
lastRemovedDigit = dv % 10;
dv /= 10;
dm /= 10;
removed++;
}
if (dmIsTrailingZeros && even) {
while (dm % 10 == 0) {
if ((dp < 100) && scientificNotation) {
// We print at least two digits, so we might as well stop now.
break;
}
dp /= 10;
lastRemovedDigit = dv % 10;
dv /= 10;
dm /= 10;
removed++;
}
}
if (dvIsTrailingZeros && (lastRemovedDigit == 5) && (dv % 2 == 0)) {
// Round down not up if the number ends in X50000 and the number is even.
lastRemovedDigit = 4;
}
int output = dv +
((dv == dm && !(dmIsTrailingZeros && even)) || (lastRemovedDigit >= 5) ? 1 : 0);
int olength = dplength - removed;
// Step 5: Print the decimal representation.
// We follow Float.toString semantics here.
if (sign) {
result[index++] = '-';
}
if (scientificNotation) {
// Print in the format x.xxxxxE-yy.
for (int i = 0; i < olength - 1; i++) {
int c = output % 10;
output /= 10;
result[index + olength - i] = (char) ('0' + c);
}
result[index] = (char) ('0' + output % 10);
result[index + 1] = '.';
index += olength + 1;
if (olength == 1) {
result[index++] = '0';
}
// Print 'E', the exponent sign, and the exponent, which has at most two digits.
result[index++] = 'E';
if (exp < 0) {
result[index++] = '-';
exp = -exp;
}
if (exp >= 10) {
result[index++] = (char) ('0' + exp / 10);
}
result[index++] = (char) ('0' + exp % 10);
} else {
// Otherwise follow the Java spec for values in the interval [1E-3, 1E7).
if (exp < 0) {
// Decimal dot is before any of the digits.
result[index++] = '0';
result[index++] = '.';
for (int i = -1; i > exp; i--) {
result[index++] = '0';
}
int current = index;
for (int i = 0; i < olength; i++) {
result[current + olength - i - 1] = (char) ('0' + output % 10);
output /= 10;
index++;
}
} else if (exp + 1 >= olength) {
// Decimal dot is after any of the digits.
for (int i = 0; i < olength; i++) {
result[index + olength - i - 1] = (char) ('0' + output % 10);
output /= 10;
}
index += olength;
for (int i = olength; i < exp + 1; i++) {
result[index++] = '0';
}
result[index++] = '.';
result[index++] = '0';
} else {
// Decimal dot is somewhere between the digits.
int current = index + 1;
for (int i = 0; i < olength; i++) {
if (olength - i - 1 == exp) {
result[current + olength - i - 1] = '.';
current--;
}
result[current + olength - i - 1] = (char) ('0' + output % 10);
output /= 10;
}
index += olength + 1;
}
}
return index - off;
}
}