Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2018-2024 OVO Energy Limited
*
* SPDX-License-Identifier: Apache-2.0
*/
package fs2.kafka
import scala.annotation.nowarn
import scala.concurrent.Promise
import cats.{Apply, Functor}
import cats.effect.*
import cats.syntax.all.*
import fs2.*
import fs2.kafka.internal.*
import fs2.kafka.producer.MkProducer
import org.apache.kafka.clients.producer.RecordMetadata
import org.apache.kafka.common.{Metric, MetricName, PartitionInfo}
/**
* [[KafkaProducer]] represents a producer of Kafka records, with the ability to produce
* `ProducerRecord`s using [[produce]].
*/
abstract class KafkaProducer[F[_], K, V] {
/**
* Produces the specified [[ProducerRecords]] in two steps: the first effect puts the records in
* the buffer of the producer, and the second effect waits for the records to send.
*
* It's possible to `flatten` the result from this function to have an effect which both sends
* the records and waits for them to finish sending.
*
* Waiting for individual records to send can substantially limit performance. In some cases,
* this is necessary, and so we might want to consider the following alternatives.
*
* - Wait for the produced records in batches, improving the rate at which records are
* produced, but loosing the guarantee where `produce >> otherAction` means `otherAction`
* executes after the record has been sent.
* - Run several `produce.flatten >> otherAction` concurrently, improving the rate at which
* records are produced, and still have `otherAction` execute after records have been sent,
* but losing the order of produced records.
*/
def produce(
records: ProducerRecords[K, V]
): F[F[ProducerResult[K, V]]]
}
object KafkaProducer {
implicit class ProducerOps[F[_], K, V](private val producer: KafkaProducer[F, K, V])
extends AnyVal {
/**
* Produce a single [[ProducerRecord]], see [[KafkaProducer.produce]] for general semantics.
*/
def produceOne_(record: ProducerRecord[K, V])(implicit F: Functor[F]): F[F[RecordMetadata]] =
produceOne(record).map(_.map { res =>
res.head.get._2 // Should always be present so get is ok
})
/**
* Produce a single record to the specified topic using the provided key and value, see
* [[KafkaProducer.produce]] for general semantics.
*/
def produceOne_(topic: String, key: K, value: V)(implicit F: Functor[F]): F[F[RecordMetadata]] =
produceOne_(ProducerRecord(topic, key, value))
/**
* Produce a single record to the specified topic using the provided key and value, see
* [[KafkaProducer.produce]] for general semantics.
*/
def produceOne(
topic: String,
key: K,
value: V
): F[F[ProducerResult[K, V]]] =
produceOne(ProducerRecord(topic, key, value))
/**
* Produce a single [[ProducerRecord]], see [[KafkaProducer.produce]] for general semantics.
*/
def produceOne(record: ProducerRecord[K, V]): F[F[ProducerResult[K, V]]] =
producer.produce(ProducerRecords.one(record))
}
/**
* [[KafkaProducer.Metrics]] extends [[KafkaProducer]] to provide access to the underlying
* producer metrics.
*/
abstract class Metrics[F[_], K, V] extends KafkaProducer[F, K, V] {
/**
* Returns producer metrics.
*
* @see
* org.apache.kafka.clients.producer.KafkaProducer#metrics
*/
def metrics: F[Map[MetricName, Metric]]
}
/**
* [[KafkaProducer.PartitionsFor]] extends [[KafkaProducer.Metrics]] to provide access to the
* underlying producer partitions.
*/
abstract class PartitionsFor[F[_], K, V] extends KafkaProducer.Metrics[F, K, V] {
/**
* Returns partition metadata for the given topic.
*
* @see
* org.apache.kafka.clients.producer.KafkaProducer#partitionsFor
*/
def partitionsFor(topic: String): F[List[PartitionInfo]]
}
/**
* Creates a new [[KafkaProducer]] in the `Resource` context, using the specified
* [[ProducerSettings]]. Note that there is another version where `F[_]` is specified explicitly
* and the key and value type can be inferred, which allows you to use the following syntax.
*
* {{{
* KafkaProducer.resource[F].using(settings)
* }}}
*/
def resource[F[_], K, V](
settings: ProducerSettings[F, K, V]
)(implicit F: Async[F], mk: MkProducer[F]): Resource[F, KafkaProducer.PartitionsFor[F, K, V]] =
KafkaProducerConnection.resource(settings)(F, mk).flatMap(_.withSerializersFrom(settings))
private[kafka] def from[F[_], K, V](
connection: KafkaProducerConnection[F],
keySerializer: KeySerializer[F, K],
valueSerializer: ValueSerializer[F, V]
): KafkaProducer.PartitionsFor[F, K, V] =
new KafkaProducer.PartitionsFor[F, K, V] {
override def produce(
records: ProducerRecords[K, V]
): F[F[ProducerResult[K, V]]] =
connection.produce(records)(keySerializer, valueSerializer)
override def metrics: F[Map[MetricName, Metric]] =
connection.metrics
override def toString: String =
"KafkaProducer$" + System.identityHashCode(this)
override def partitionsFor(topic: String): F[List[PartitionInfo]] =
connection.partitionsFor(topic)
}
/**
* Creates a new [[KafkaProducer]] in the `Stream` context, using the specified
* [[ProducerSettings]]. Note that there is another version where `F[_]` is specified explicitly
* and the key and value type can be inferred, which allows you to use the following syntax.
*
* {{{
* KafkaProducer.stream[F].using(settings)
* }}}
*/
def stream[F[_], K, V](
settings: ProducerSettings[F, K, V]
)(implicit F: Async[F], mk: MkProducer[F]): Stream[F, KafkaProducer.PartitionsFor[F, K, V]] =
Stream.resource(KafkaProducer.resource(settings)(F, mk))
private[kafka] def produce[F[_]: Async, K, V](
withProducer: WithProducer[F],
keySerializer: KeySerializer[F, K],
valueSerializer: ValueSerializer[F, V],
records: ProducerRecords[K, V]
): F[F[ProducerResult[K, V]]] =
withProducer { (producer, blocking) =>
records
.traverse(produceRecord(keySerializer, valueSerializer, producer, blocking))
.map(_.sequence)
}
private[kafka] def produceRecord[F[_], K, V](
keySerializer: KeySerializer[F, K],
valueSerializer: ValueSerializer[F, V],
producer: KafkaByteProducer,
blocking: Blocking[F]
)(implicit
F: Async[F]
): ProducerRecord[K, V] => F[F[(ProducerRecord[K, V], RecordMetadata)]] =
record =>
asJavaRecord(keySerializer, valueSerializer, record).flatMap { javaRecord =>
F.delay(Promise[(ProducerRecord[K, V], RecordMetadata)]())
.flatMap { promise =>
blocking {
producer.send(
javaRecord,
{ (metadata, exception) =>
if (exception == null)
promise.success((record, metadata))
else promise.failure(exception)
}
)
}.map(javaFuture =>
F.fromFutureCancelable(
F.delay((promise.future, F.delay(javaFuture.cancel(true)).void))
)
)
}
}
/**
* Creates a [[KafkaProducer]] using the provided settings and produces record in batches.
*/
def pipe[F[_], K, V](
settings: ProducerSettings[F, K, V]
)(implicit
F: Async[F],
mk: MkProducer[F]
): Pipe[F, ProducerRecords[K, V], ProducerResult[K, V]] =
records => stream(settings)(F, mk).flatMap(pipe(_).apply(records))
/**
* Produces records in batches using the provided [[KafkaProducer]].
*/
def pipe[F[_]: Concurrent, K, V](
producer: KafkaProducer[F, K, V]
): Pipe[F, ProducerRecords[K, V], ProducerResult[K, V]] =
_.evalMap(producer.produce).parEvalMap(Int.MaxValue)(identity)
private[this] def serializeToBytes[F[_], K, V](
keySerializer: KeySerializer[F, K],
valueSerializer: ValueSerializer[F, V],
record: ProducerRecord[K, V]
)(implicit F: Apply[F]): F[(Array[Byte], Array[Byte])] = {
val keyBytes =
keySerializer.serialize(record.topic, record.headers, record.key)
val valueBytes =
valueSerializer.serialize(record.topic, record.headers, record.value)
keyBytes.product(valueBytes)
}
private[this] def asJavaRecord[F[_], K, V](
keySerializer: KeySerializer[F, K],
valueSerializer: ValueSerializer[F, V],
record: ProducerRecord[K, V]
)(implicit F: Apply[F]): F[KafkaByteProducerRecord] =
serializeToBytes(keySerializer, valueSerializer, record).map { case (keyBytes, valueBytes) =>
new KafkaByteProducerRecord(
record.topic,
record.partition.fold[java.lang.Integer](null)(identity),
record.timestamp.fold[java.lang.Long](null)(identity),
keyBytes,
valueBytes,
record.headers.asJava
)
}
def apply[F[_]]: ProducerPartiallyApplied[F] =
new ProducerPartiallyApplied
final private[kafka] class ProducerPartiallyApplied[F[_]](val dummy: Boolean = true)
extends AnyVal {
/**
* Alternative version of `resource` where the `F[_]` is specified explicitly, and where the
* key and value type can be inferred from the [[ProducerSettings]]. This allows you to use the
* following syntax.
*
* {{{
* KafkaProducer[F].resource(settings)
* }}}
*/
def resource[K, V](settings: ProducerSettings[F, K, V])(implicit
F: Async[F],
mk: MkProducer[F]
): Resource[F, KafkaProducer[F, K, V]] =
KafkaProducer.resource(settings)(F, mk)
/**
* Alternative version of `stream` where the `F[_]` is specified explicitly, and where the key
* and value type can be inferred from the [[ProducerSettings]]. This allows you to use the
* following syntax.
*
* {{{
* KafkaProducer[F].stream(settings)
* }}}
*/
def stream[K, V](settings: ProducerSettings[F, K, V])(implicit
F: Async[F],
mk: MkProducer[F]
): Stream[F, KafkaProducer[F, K, V]] =
KafkaProducer.stream(settings)(F, mk)
override def toString: String =
"ProducerPartiallyApplied$" + System.identityHashCode(this)
}
/*
* Prevents the default `MkProducer` instance from being implicitly available
* to code defined in this object, ensuring factory methods require an instance
* to be provided at the call site.
*/
@nowarn("msg=never used")
implicit private def mkAmbig1[F[_]]: MkProducer[F] =
throw new AssertionError("should not be used")
@nowarn("msg=never used")
implicit private def mkAmbig2[F[_]]: MkProducer[F] =
throw new AssertionError("should not be used")
}